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I. INTRODUCTION

This report presents and discusses a general-purpose FORTRAN
equation-fitting program called FINLIE.

Assume that the behavior of some physical system can he adequately
described by a set of equations involving one independent variable x
and N2 dependent variables (N2 > 1). FINLIE requires that these equa-
tions be reducible to one of two forms:

(a) a system of N2 first-order ordinary differential equations
of the form

dy./dx = f. (x, Y, C) [j=l, 2, N2] (1)

where Y is the vector of N2 dependent varial es:

Y- (Yl- Y21 ' Y2

and where C is a vector of N3 linearly independent parameters (N3 > 0):

C E (cl, c 2 , ... CN3)

(b) a system of N2 algeýbraic and/or transcendental equations of
the form

yj = gj (x, Y0  C) [j = 1, N2] (2)

where Y is the initial condition vector:
0

"Y0 = (Y1 0, Y2 0, ... YN2,0)

The user writes his system (1) or (2) as a FORTRAN subroutine whose
name is submitted to FINLIE. FINLIE's task is to adjust the parameters
and initial conditions of (1) or (2) so as to fit the solution curves
to measurements taken on one or more of the dependent variables. For
system (1), no knowledge of the form of the solution is necessary.
Indeed, we may in general assume that system (1) possesses no
closed-form solution of the form (2). Otherwise, we would fit the
solution equations rather than the differential equations.

System (1) can be linear or nonlinear in the parameters; system (2)
can be linear or nonlinear in the parameters and in the initial condi-
tions. However, linear parameters and initial conditions are not much
of a challenge to FINLIE. Indeed, the word FINLIE can be viewed as an
acronym for "FItting NonLInear Equations"; the program was created to
handle nonlinear situations. (System (1) may also be nonlinear in the
more common sense of "nonlinear in the dependent variables"; for our
purposes, this is irrelevant.)

7
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As a rather elementary example of system (1), consider:

dyl/dx = l/Y2 (3)

dY2 /dx = -c 1 (1+c 2 y2)y 2, c 1 ý 0

Here N2 = N3 - 2. If x is interpreted as distance, y1 as time and

Y as the magnitude of a missile's velocity, then (3) is essentially

the drag equation for a horizontal flight in which the drag coefficient
varies linearly with Mach number.

One of the reasons we chose this particular example is that it
does possess a closed-form solution:

yl = Y1 0 - c 2 (x - xO) + (b/c 1 ) (u - 1)

Y2 = (bu - c

where u = exp [cl (x - xo)] (4)

b =2 + (Y2 0 )

In "real life" we would always fit (4)--which is of the form (2)--
and forget about (3). In this report, however, we will use both (3)
and (4) to illustrate our remarks.

FINLIE is given measurements on the first Nl of the N2 dependent

variables; that is, on Y'l Y2 ... YNI where 1 < NI < N2. The m-th

data point Rm thus consists of NI measurements at the independent

variable value x
m

Rm (xm' Ylm' Y2m' "'" YN(,m)

where Y.m denotes the measured value of y. at xm,

Assume that the measurements have been obtained from one or more
distinct experiments, each experiment having its own initial condition
vector. Because our first practical application of FINLIE was to rounds
fired in an enclosed range, we will call each distinct experiment a
round. By "multi-round" data, then, we mean NR sets of measurements
T1NWRI1), all applicable to the some system of equations and hence help-
ing to determine the single parameter vector C, but each measurement set
determining its own initial condition vector.

Thus there are NR x N2 initial conditions to be determined:

IC = {(Y0)1, (Y 0 )2 ...2 (Yo)NR

_[8



FINLIE requires that these initial conditions refer to the same indepeno-
ent variable value x0 for every rcund. However, x3 need not coincide

with any value x. at which measurements were taken and x0 need not even

fall within the interval bounded by the smallest and largest of the xm

values. (Of course, the farther x0 lies from that interval, the more

unreliable is the extrapolation to that point.)

We assume that within each round, the x values increase with

increasing m. For example, if we have two rounds with four and five
data points, respectively, then

x 1 < x 2 < x5 < ýx 4

and x5 < x6 < x7 < x < x9

but no demands are made on the combined ordering of the nine values.
A member of the first string of inequalities above can be less than,
equal to or greater than some member of the second string.

For convenience we coin the word "paramic" to mean "parameter or
initial condition." Of course, the initial conditions are parameters
of a sort: parameters whose values can change with x 0 and with the

round. Thus, for example, system (4) could have been written in terms
of four "parameters"; say, in the form

S3 - c2x + (c 4 /c 1 ) z

Y2 =- (c(4z - C,)

where z = exp (c x). This fcrm conceals the fact that the values of

two of the four c.'s will change with the initial conditions.J

By our definition, a parameter is independent of the choice of
x0 and applies to (and is influenced by the measurements froml all the

rounds. This is the essential condition we imnpose on the NR rounds to
be fitted simultaneously: that the same parameter vector C applies to
each round. The measured data for any one round may be incapable of
determining C adequately; the combined rounds have a much better
chance.

FINLIE's task is to find the set of paramics
P = {IC, CI (5)

that best fits the solution curve!- to the multi-round measurements.



Note that P consists of NR x N2 initial. conditions and N3 parameters, a

total of

N - (NR x N2) + N3 (6)

paramics. By a "best fit", we mean a least squares fit. That is,
FINLIE seeks a particular set P--;all it P--that minimizes c, the sum
of the weighted squares of the residuals of the fit:

4 NI 2

;(P) =W im [ jm - Yj (xm, 2 (7)

where

N4 the total number of data points R for all the rounds;

wjm = a non-negative weighting factor associated with yjm;

y (x ,P) = y. evaluated at x , using the current value of P.
jm m

Other convenient measures of the goodness of fit include:

2 _ (P)
(a) the estimated variance of the fit = s

(b) the estimated standard deviation of the fit = s

(c) the estimated probable error of the fit = 0.67449 s.

Note that for a least squares fit we must have N4 > N; that is,
there must be more data points than paramics. (We also assume that the
number of data points in each round exceeds N2, the number of initial
conditions for each round.)

The function c is nondimensional. Hence, if we let

"I ]d = dimensions of [,

Eq. (7) implies that

r-2()
[Wjm d = [Yj-Id

If the user fails to specify the values of the weights, FINIIE will s;et
all weights to unity. This may or may not be adequate. Usually the
weights are chosen so that each term in (7) is of the same order of
magnitude. This can be done by making w. finversely proportional to

the square of the uncertainty in measurement y.m

10



w = K/(ajm )2 (9)Wjm j

where K is a nondimensional, positive--but othe:wise arbitrary--number.

That is, in general only relative uncertainties are n,ýedec.* Suppose,

for example, that there are two measured variables:

Yl (furlongs), for which the uncertainty in each measurement

is about ten furlongs;

Y2 (fortnights), for which each uncertainty is about 0.1 fortnight.

If we choose K equal to, say, (alm) 2 in (9), we have

-2
Wlm = 100/100 = 1 (furlong)

W2m = 100/0.01 = 404 (fortnight)-
2

Any other weights for which w -- 10 4 would work as well. In fact,W2m" im4

any weights for which the ratio is "close" to 10 4--say, within a factor

of two larger or smaller--would probably work as well. Letting FINLIE

set all weights at unity, on the other hand, would not work well at all

in this situation. The y1 measurements would then have much too great

an influence on the fit; their noise would drown out the y2 measurements.

If measurements are taken on more than one dependent variable
(that is, if Nl>l), it may happen that for some data point Rm, one or

more (but not all) of the measurements is missing or is clearly very
wrong. There is no need to discard the entire data point; it suffices
to set the weights of any missing or outlier measurements at zero.

If we are fitting the solution system (2) to the data, FINLIE
computes the values yj(xm,P) in (7) directly from the given exprcssions.

If we are fitting the differential equation system (1), however, then
FINLIE must obtain yj(xm,P) by numerical integration. When we have

a choice, we pick (2) over (1) to avoid this integration: 'tis a
summation devoutly to be missed.

Fach time FINLIE is called by the user, it performs one iteration
of its search procedure. That is, the user gives FINLIE the paramic
set P and FINLIE returns a set P F1 is almost certainly not the

desired solution, but it should be an improvement over P0 in the sense

that E(P1 ) < (Po). The user then gives FINIIE the set P and gets

back P,, and so on. The process stops when a specified convergenct
criterion is satisfied or some computational disaster arises.

HO',~ t.•,' for c) an <•••< J•
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To illustrate some of the above generalities, we return to our
sample systems (3) and (4). Suppose that from three enclosed-range
firings we obtain the data points (Xm, Ylm) listed in Table I.

Assume that the x values in the table are exact but that each of them

sixteen yl measurements has an associated uncertainty aI (seconds).

Table I. Sample Data Points for System (1) or (4)

m xm (metres) yIm(seconds)

1 0.0 2.0000000
2 1.0 2.0100507
3 2.0 2.0202034 Round El
4 3.0 2.0304591
5 4.0 2.0408189

6 -3.0 -0.0147728
7 -2.0 -0.0098987
8 -1.0 -0.0049746
9 0.5 0.0025064

10 1.5 0.0075577
11 2.0 0.0101027

12 0.0 3.0000000
13 1.0 3.0033506
14 2.0 3.0067358 Round E3
15 3.0 3.0V01561
16 5.0 3.0171031

Here we have NR 3 rounds (the three firings), N4 = .6 measure-
ments and N = 8 paramics. The paramics are the six initial conditions
and twu parameters:

1(0, Y20)El' (Ylo 'y20)E2' {Ylo'Y20)F3' c 1 , c2) (10)

where we arbitrarily let x -- the x value at which all six initial

conditions apply--be zero. The values of the eight paramics are to
be adjusted so as to minimize

16
c (P) w Wm [Ylm - Yl(Xm'P)J]

Whenever only one dependent variable has been measured (NI = 1),
tne user--unless he has information to the contrary--can assume that
all the uncertainties olin are equal. This simplifies matters by

allowing the user to set w IM= 1 for all m. Thus, for Table i, we set

12



Wim -- 1 (seconds)-2 [m=1,2,...l6]

The "measured" Ylm values in Table I were actually obtained by

rounding to seven decimal places the values computed from the solution
system (4), using x0 = 0 and

P = Q2,1 0 0 )El' (0, 2 00 )E2, (3, 30 0 )F3, 0.01, 0.00013

The values in the table are thus equal to yl(xm,P) to the number
of decimal places shown. FINLIE's task--given system (3) or (4) nnd
the Table I data--would be to find P.

FINLIE must be given another bit of information before it can
begin its search for P: a starting point P0. For systems (3) and

(4) and the Table I data, we gave FINLIE the relatively poor first
estimate

P0  ' {(1" 5' 5 0)El' (-0 . 5' 250)E2' ( 2 5' 2 5 0 )E3' 0.02, 0)

FINLIE then proceeded from P0 to P Ito P2 and so on to P7 P an acceptable

approximation to P (see Table II). Within the idiosyncracies of machine
computation, this path from P0 to P7 is the same whether we fit system
(3) or system (4). As one might expect in a convergent situation, the
last two points (P 6 and P.) are practically coincident. The slight

discrepancy between P7 and P is due almost entirely to -the round-off

error in the ylm data of Table I.

Unfortunately, a p3or choice of P0 can sometimes prevent

FINLIE's ever finding P. Hence a reasonable amount of labor expended
in determining P0 may pay dividends. For frequently recurring

applications, it may be worthwhile for the user to write his own
FORTRAN subroutine for extracting a first estimate P from the data

points. Usually only a few of the paramic estimates are critical
for obtaining convergence to P; the remaining paramics can have sur-
nrisingly poor first estimates wivh impunity. And for some systems
ut equations, the choice of P is very nearly immaterial: all roads
lead to P.

A useful feature of FINLIE is its ability--at the user's
request--to hold fixed the input values of any specified paramics,
rather than allow those i.nput values to be adjusted by the fitting
,ýrocess. Thus, for example, the effect of a given parameter--say,
c, in system (3) or (4)--.cai, be suppressed during a computer -run by

giving that parameter an iritial value of zero and specifying that this

13
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Tab]e II. Path from P0 to P7 for System (3) or (4) and

the Data of Table 1.

Round El Round E2

Y1 0 (s) Y2 0 (mls) y10(s) Y20 (m/s)

P 1.s so -.5 250
P 1  1.998 69.75 -. 000555497 189.54
P2  1.9999830 90.83 -. 000005638 198.90
P3  1.9999996 99.18 -. 000000546 199.931
P4  2.0000001 99.993 .000000391 200.009
P. 2 994999727 .000000010 199.999576
P6  2 99.999727 .000000012 199.999612
SP7  2 99.999727 .000000012 199.999612

Round E3

1 0(s) Y2 0 (m/s) c 1(1/m) c 2 (s/m)

P 0 2.5 250 .02 .0
P 2.9987 270.35 -. 0338 .0096
SP2  2.9999974 298.31 -. 0059 .005&
P3  2.9999997 300.13 .0082 .0122
P4  3.0000003 300.02 .00997 -. 0024
SP5  3 299.999242 .009998427 .000106786
P6  3 299.999324 .009998405 .000100384
P7  3 299.999324 .009998405 .000100384

S106 n(P) •(Pn)/E(P n-) std. dev.

Po 3888205. .6972
P1 198.66 .00005 .0050
P2 15.27 .07688 .0014
2.33 .21791 .000645

P4 .20 05936 .000157
P5  .0000013 .00001 .000000398
P, .0000000023 .00185 .000000017

pb.0000000023 .9999995 . 000000017
7

14



value is to be retained. Since it Is the user's task to program his
particular version of equation set (1) or (2), we see that the above
feature can save the user from programming many versions of the same
equations, the versions differing only in the nature of the parameters
involved. If the version programmed contains every parameter a
rtasonable (or only slightly unreasonable) person might ever want to
consider, the programmer need never alter his program; he can always
suppress unwanted parameters at will.

Of course, the user can also fix any paramic at a nonzero value.
Consider, for example, the situation where some of the input paramic
estimates are known to be respectable, ball-park values, while the
remaining estimates are little more than wild guesses. There is no
provision in FINLIE for weighting the paramic estimates. Thus when
the data are especially noisy, FINLIE--in its single-minded effort to
decrease .-- might very well downgrade an excellent estimate. One
way to avoid (or at least to try to avoid) this difficulty is to make
two computer runs. On the first run, all highly regarded paramic
estimates are held fixed, so that the other paramics will be determined
for these fixed values. The fixed and determined paramic values from
this first run then serve as the estimates for a second run in which
none of the paramics is held fixed.

The mechanics of informing FINLIE as to which, if any, of the
paramics is to be held constant will be covered later.

In Section 11, we discuss in more detail what FINLIE does for
the user; in Section IlIT, we discuss what the user must do for FINLIE.

IH. INSIDE FINLIE: WHAT FINLIE DOES FOR THE USER

We rewrite the paramic set P of Eq. (5) in the form

P = (P P 2  "'" PN)()

where the first NR x N2 elements of P are the initial conditions and

the remaining N3 elements are the parameters.

We can regard P as a point in an N-dimensional paramic space S.
Then E(P), as defined by Eq. (7), is the value of the continuous
scalar point function c at point P. For each point P in the paramic
space S, there corresponds a single value c(P). JFINLIE's task, given
a starting point POP is to search S for a point P that yields a minimum

value E(P). (When more than one minimum exists, our choice of starting
point P0 usually determines whether or not c(P) is the desired

absolute minimum.)

!1
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The fitting process carried out by FINLIE can best be explained in
terms of a single-round situation. Once the single-round procedure has
been established, it will then be relatively easy to see how the
process can be extended to any number of rounds.

Hence we introduce a single-round paramic set Q:

Q - ,ql, q2  q (12)

where
N23 = N2 + N3, (13)

the iumber of paramics for a single round. The first N2 elements of
Q are the initial conditions and the remaining N3 elements are the
parameters. For our sample system (3) or (4), we have (for any one
round)

Q = (Y1O' Y20' c'1 c 2)

Similarly, we introduce a single-round version of c(P):
Ni
N(Q) w. [Yj. - y.(x mQ)] 2  

(14)
mQ Ei jm jm j m
m j=1 3

where the summation on m is over the measured data for the single round.
(For Round E2 of Table I, for example, m would range from 6 to 11.)
Note that the c for a multi-round situation, Eq. (7), is the sum of
the ý's for the individual rounds:

NR

ntM'' En (15)
n=l

For the moment, then--a rather long moment, lasting until Section
TI (G)--we will assume that FINLIE is handling a single-round
situation: only one set of initial conditions is being determined.

A. Condition for a Minimum y

We can regard Q as a point in an N23-dimensional space S1. A

necessary (though insufficient) condition for point Q to yield a
minimum value of y is that the gradient of y at that point be the zero
vector:

grad q) (16)

Thus FINLIE must seek a point that satisfies all N23 components of (16)

simultaneously. From Eq. (14), we see that at any point Q

16



S= -2 a [k=l,2,...N23] (17)

where N1

(Q) Wm [Yjm -Yj (xm,Q)] . Djk(XmQ) (18)
m j-1

Djk (xm,Q) -ayj(x.,Q)/q, (19)

and where, in our dimensional notation,

rak~d= [qk-1]d (20)

[Dikid = [yjqk"'1 (21)

Thus condition (16) can be written in the form

jk (0 -01 [k=l,2,...N231 (22)

The N23 components 8k define a vector:

S(Q) (e1(Q) 2(Q)' ' B2(Q))S (23)-2 N223

which, from (16-17), has the direction of the negative gradient of y

at point Q; that is, the direction in which the rate of decrease of y
is greatest:

= -(1/2) grad y. (24)

"g is a vector point function of Q. For each point Q in the paramic

space S1, there corresponds a unique vector ý. Thus FINLIE's search

for a point Q that yields a minimu= value y(Q) has become a search for

a point Q at which ý is zero.

B. Influence Coefficients

The partial derivatives Dik in (18) are sometimes called "influence"

(or "sensitivity") coefficients because they reflect the influence of
the paramics on the solution curves.

To satisfy (22), FINLIE must be able to evaluate the influence
coefficients at any point Q for each independent variable value xM

17



The manner in which FINLIE evaluates DJk (mQ) depends on which

equation set, (1) or (2), we are fitting to the data.

C. Influence Equations for System (1)

If we give FINLIE the differential equation system (1), then we
must also give FINLIE a system of differential equations for the
influence coefficients. Taking the partial derivative of each side of
(1) with respect to paramic qk' we have

(dy.) af.
3qk d qk

or, assuming that the order of differentiation can be reversed,

d D~ - af.=k - r2 5)dx "25

ij=1r ....N
The system (2S) is subject to the initial conditions:

DI {XM 1 if j=k (26)
Djk (XQ) =0 otherwise

(These initial conditions merely reflect the fact that the influence
coefficient D.. is, by our definition, ayj/3yj 0 and hence equals one

at x0.)

The paramics affect f. (x,Y,C) in two ways: indirectly throughj

their effect on the dependent variable vector Y and directly through
the parameter vector C. Hence (25) can be rewritten in the more
cumbersome but (possibly) more revealing form:

;DN2 0 if k < N2

dx = 4 Y Dik + if k > N2 (27)

[j=l,2, ... N2

"k=l,2, ... N23]

18



where

subscript C indicates that x and vector C are considered
constant in taking the partial derivatives of f (xYC);

subscript Y indicates that x and vector Y are considered
constant in taking the partial derivatives of fi(x,Y,C).

Thus, by "paramic differentiation" we obtain an auxiliary system of
differential equations (27) whose solutions are the influence coeffi-
cients needed to fit equation set (1). Note from (27) that these
influence equations are always linear in the influence coefficients
Djk. The number of influence equatfons is

NA • N2 x N23 (28)

The user must include his version of system (27) in the FORTRAN
subroutine containing his version of system (1).

For our by-now-familiar example, system (3), we have NA = 2 x 4 = 8.
The eight influence equations for system (3) are shown in the upper
portion of Table III, where d )' d( )/dx.

Recall that our only purpose in obtaining the influence coefficients
is to be able to evaluate 8 k(Q), Eq. (18), in our effort to satisfy
condition (22). From (18) we see that 8k involves D. only for

k jk
j=l to Nl; that is, only for the measured variables. Yet Eqs. (25-27)
show j running from 1 to N2; that is, over all the dependent variables.
Do we have more influence equations here than we need? The answer is:
no. We have implicity assumed that there are no extraneous dependent
variables in system (1): all of the unmeasured dependent variables
are needed to solve the differential equations for the measured
variables. Hence the Djk for Nl < j < N2 are also needed.

For our example, system (3) with Nl=l, Y2 is clearly needed to

solve the differential equation for yl. Thus each D is also needed,
2k

as we see in Table IIT (A). (Cn the other hand, if Y2 had been the

only measured variable in system (3), then yl would be an extraneous

variable and should be thrown out.)

The mechanics of writing and submitting the influence equations
will be discussed later. FINLIE will automatically assign the proper
initial conditions (26) and integrate the influence equations simul-
taneously with the original s)stem (1) to obtain y.(X ,Q) and

Djk (Xm Q) at each xmm
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Table III. Influence Equations for System (3) and for System (4)

(A) For System (3):

-2D11)' - yl' /'Ylo = -(y2'2 21

2 )CD1 2)' ' yl'/'y20 = -(Y2 )D2 2

-2
(D1 3 )' 'Y,' /'cl = -(y 2 )D 2 3

(D1 4 )' ay-1 '/3c 2 = -(y 2 -D 2 4

(D21)' Y'31 -cl(1+2 c2y2)D21

(D 22)' •y 2' /3Y 2 0 = -cl(l+2c 2 Y2)D 2 2

(D2 3 )' 3y 2 ' /c 1  = -C 1 (l+2c 2 y2 )D 2 3 - (1+c 2Y2y 2

(D2 4 )' ay 2 '/ac 2  n -C_(l+2c 2 Y2)D 2 4 - c1Y2

where (D 1 1 ) 0 = (D2 2 ) 0 = 1; (Djk)O 0 for j 4 k

(B) For System (4):

Dl 11 ayl/aylo = 1
2

DI12 -yj/ Y2 0 = -(u-l)/(clY2 0 2)

D 2
(b/c1 ) [1-u+c 1(x-x0)u]

D 1 4 -yi/ac 2  = (u-1)/c 1 - (x-x 0 )

(C) Unneeded influence Equations for System (4):

21 2- y 2 /1Y 1 O = 0
SD2 - ýy2/"Y20 = (y2/Y20) 2 u

22

D23 -- ýy2/9Cl = -by 2  (x-x 0 )

D24 - y2 / C2  =C-u-i) y 2 2

20
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One final remark. For large systems with many paramics, the
exact influence equations (27) can be rather cumbersome. In many
cases, certain liberties can be taken with the influence equations:
expressions can be approximated by simpler ones, the effect of certain
paramics on certain terms in the original equations can be ignored,
etc. If done with care and judgment, such simplifications will have
no effect on the final answer: the same p6int Q will be reached with
or without the simplifications. Note, however, that discretion is
called for. If the user has any doubts as to the merits of some
modification to the exact influence equations (and even when he hasn't
any doubts), his safest course is to avoid such a modification.

D. Influence Equations for System (2)

If we give FINLIE the solution set (2), then we must also give
FINLIE the influence equations obtained by differentiating (2):

D - 9 [1u,2, Nl ](9
j k Lk=k,2, N23]

We assume--as with system (l)--that there are no extraneous variables
in system (2). (For (2), this means that the initial conditions for
all of the unmeasured dependent variables are needed to evaluate the
expressions for the measured variables.) However, the D for

NI < j < N2 are superfluous and should be ignored. Thus the number
of influence equations required to fit system (2) is

NB = NI x N23 (3C)

To fit system (4), for example, (where NI = 1 and N2 = 2), the D A

values are not required and we need submit only four influence equations
to FINLIE. These equations are shown in Table II (B). FINLIE will
automatically set all undefined DkIs to zero. For the sake of

completeness, expressions for the unneeded Djk are given in Table ITI

(C), but we emphasize that these latter equations should not be given
to FINLIE. Note that the eight expressions for D in Table Ill (B

jk
and C) do indeed satisfy the initial conditions indicated in part A
of the table.

The remarks in the previous section on the possibility of
simplifying the influence equations apply to system (29), although
here the urge to simplify may be less compelling.
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E. An Overview

To summarize thus far: FINLIE determines the values of y (x, Q)
J

and Djk (Xm, Q) either

(i) by numerically integrating a system of N2 plus NA first-
order differential equations or

(ii) by evaluating a system of N2 plus NB algebraic or
transcendental expressions.

Except for this difference--but what a difference it can be in terms of
machine time!--the fitting process used by FINLIE is the same for the
two equation sets (1) and (2).

This fitting process consists of adjusting Q until it satisfies
condition (22). Of course, it would be pleasant if FINLIE could solve
(22) for Q in some direct, one-step fashion. No fooling around with
Q0' QI, etc; just leap in and solve the N23 equations of (22) for the

N23 components of Q. Unfortunately, when system (22) is nonlinear in
one or more of the paramics, no such general one-step schemae exists.
Hence FINLIE, expecting the worst, sets out to solve (22) by an
iterative process.

Two of the standard iterative techniques are:

(i) differential corrections (alias Taylor-series lineariza-
tion, alias Gauss method, alias Gauss-Newton method);

(ii) steepest descent (alias gradient search).

FINLIE uses a third method, due to Marquardt*, which is a blend of the
first two methods, retaining the best features of each and avoiding
their disadvantages. We will discuss enough of the differential
corrections and steepest descent techniques to see what is involved in
combining the two.

F. Differential Corrections in Space S1

For each point Q in S1 there corresponds a position vector

Let ý be the vector from point Q to point Q:

A (31)

= + (Aq 1 , Aq2 , . qN23. S
'1

* ,Se the Bib 1ioj raphY., Part A.
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In the differential corrections technique, we approximate the basic
condition (22) by a system of equations (to be derived in the next
paragraph) that is linear in the increments Aq k We can't solve (22)

for Q, but given a point, say QO, we can solve the approximate condi-

tions for an approximate increment vector A4. This increment is then

added to 10 to reach the next way-station on our trek to Q:

S= + (32)

Point Q, is "n improvement over point Q0 if y(Q1 ) is less than y(Q0 ).

But improvement or not, the differential corrections method plows
ahead, a-ing Q1 to re-solve the approximate equations for a new incre-

ment A•. The process continues in this manner through a series of

points until a specified convergence criterion has been met or a
specified number of iterations have been performed or some numerical
catastrophe occurs.

The desired approximation to condition (22) can be obtained by
expanding yj and Djk in Taylor series about point Q. We have

N23

yj (XmQ) = Y. (xmQ) + D (xmQ) " Aq
(33)

+ (higher-order terms)

D. (xQ) = Djk (XmQ) + (higher-order terms) (34)

We assume--an assumption that is not always valid--that Q is close
enough to Q to periuit us to ignore the higher-order terms in (33) and
(34). Then from definition (18), we have

NI

ýk j m[ - Yj (xmQ) Djk (xmQ)

m J 3Wjm - mQ DjnXm'Q) Aqn Djk(Xm'Q)

Dik (m~Q) N231

8k(Q) W-• j~m D jk (X MIQ) 3 Din (x MQ) Aq
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S . .. . -

By rearranging the sums, we obtain

k() - ( -00) akn (Q) Aqn (3S)

where

akn(Q) Wjm Djk (X mQ) " D. (X mQ) (36)
mm m jn m

Thus the conditions 0k(Q) 0, which hold at a point Q where y is at a

minimum, are replaced by the conditions

( 3 = kn(Q) • Aqn (37)

[k 1, 2, ... N23]

which are applicable to points in the vicinity of Q.

The quantities ak(Q) have at least four interesting properties:

~kn d
[akn~d =[(q kqn)-lId

'tnk a kn

a kk > 0

ann Rkk nk2

The first three properties follow at once from definition (36); the
fourth is a consequence of H6lder's Inequality (alias Cauchy's, alias
Schwarz's, alias Buniakovski's Inequality). In general, we regard a kn

ai the (k,n)-th element of an N23 by N23 symmetric matrix a.

In matrix form, (37) becomes

[a - (39)

[c(Q• A2T = -T(Q) f3)
24



where the superscript T (for Transpose) denotes a column vector and thesubscript S1 indicates that all components are in the N2 3-dimensional
space S1 . For either of our examples, system (3) or (4), (39) becomes

a11  '12 a13 '14 Y10  61

~21 22 a23  c24  A'ý2 0 2
S = ( 4 0 )

a31  a32  (33 a34  A 1  (40)

41 42 43 •44 C2 4

System (39) is linear in the increments Aq hence the process of
pcsolving for these increments is routine work for the computer. (Weassume that a solution does exist; this amounts to assuming that thedeterminant of matrix a is not zero.)

The differential corrections process, then, consists of substitut-
ing Q0 in (39), solving for 1Qo, substituting in (39) the point Q1
obtained by the vector addition += A4, solving for 1Q, etc.

Unfortunately, even when this process converges to some point,there is no guarantee that this point will yield the absolute minimumy. Condition (22)--which is approximated by the matrix equation (39)--guarantees only that its solution point Q will yield some relative
extremum value of y. Space SI could be teeming with points of local
extremum. Each of these extremum points, including the one we seek,is a sort of black hole in space SI. capable of drawing a nearby search
party into its core. The particular black hole into which we are drawn
depends mainly on where we start in space S
G. Differential Corrections in Space S

So far in Section II, we have assumed single-round data, NR = 1.For this situation, the differential corrections technique led tomatrix equation (39).

Consider now the three-round situation of Table I. For each roundEi (i = 1, 2, 3), FINLIE forms a vector -Ei and a matrix aEi by Eqs. (18)
and (36) respectively, using the Q and m indicated below:
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Range of Subscript m
Round Point Q in Eqs. (18) and (36)

El (YlO)El' (y20)E1l' ci c2  1 to 5

E2 (YlOE2, (120)E2, c1 , c 2  6 to 11il'i ES Ylo]E2' (720)F2, e1, '2

E3 (Yl0)E3' (y20)E3' c 02  12 to 16

In the 8-dimensional space S associated with the eight paramics pk of

Eq. (10), the J vectors take the form:

S!~ý E1-[(al)El? (02 03' O OO, O, ($3)El, (Y4EI]S

•E2 = [0, 0, (il)E2' (a2)E2' 0, 0, ('3)E2' (4)E2 1 S (41)

•E3 = [0, 0, 0, ,0 (YE3P (ý2)E3' [Y3E3P (Y4)E3 1 S

Similarly, in space S the matrix a for round El expands to:

( ail)El (C&l2 )E1 0 0 0 0 (a 1 3 )4 1  (a14)F1I

(C21)E1 (a 2 2 )El 0 0 0 0 (Cz2 3 )'i (a 2 4 )EF

0 0 00 0 0 0 0

0 0 0 0 0 0 0 0
cx =(42) 0 0 0 0 0 0 0 0

0 0(0 0 00 0 0

(031)E1 (4 3 2 )E1  0 0 0 0 (33)E 1  (a 3 4 )F.1

(' 4 1) 1  (,42)El 0 0 0 0 (a 4 3 )1 , (c 4 4 )E 1

with similar expressions for and aE 3 "

Since the multi-round e to be minimized is the sum of the single-
round " 's, FINLIF obtains the multi-rot'id version of Eq. (40) by summing
-- in space S--the three single-round i<tFI vectors of Eq. (41):
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r; ~El ' h2 * hElS (43)

and the three single-round aEi matrices:

A- [IM + E2 + aH3]S (44)

The desired multi-round matrix equation is then

[ A(P) IP pT = T(p)] f (45)

A detailed form of this equation for our three-round sample system is
given in Table IV; the generalization to any number of rounds can be
easily visualized.

The N by N symmetric matrix A will always contain

NR x (NR-l) x N2 x N2

zeroes distributed among the off-diagonal elements of all but the last
N3 rows and columns. Let akn be the (k,n)-th element of matrix A. As

in Eqs. (38), we have

[akn]d [(PkPn) - Id

ank akn

(46)
akk > 0

annakk > ank

Similarly, if bk denotes the k-th component of vector ý, then

[bk]d = [pk-1'd (47)

We have taken some pains to distinguish between the multi-round
paramics p,, and the single-round paramics qkP which for our three-round

sample systems take the form

F ((y 0o'y20 )E!, (YloY 2 0 )E2, (YloY20)E3, c1 , c 2 )

Q= (YloY 2 0 c 1, c 2 )
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The chief reason for taking these pains is that the FINLIE user must

himself make this distinction in a multi-round situation. The FINLIE
input arguments (to be discussed later) are defined in terms of the N
paramics Pk' but the influence equations submitted to FINLIE must always

be written in terids of the N23 (= N2 + N3) paramics qk" The values of

the i nitial conditions may change with the round, but the influence
equations themselves, like the original equations (1) or (2) on which
they are based, remain the same. Thus, regardless of the number of
rounds, there will always be N23 influence coefficients, defined in
terms of the N23 paramics qk' and there will always be NA (= N2 x N23)

or NB (= Nl x N23) influence equations (depending on whether the user
is working with system (I) or system (2)).

H. Differential Corrections in Space S

If the paramics Pk are not all of the same dimension, our paramic

space S is a hodgepodge: a salmagundi, a gallimaufry, an olla-podrida
of units. Certain computational advantages can be obtained by working
in a space S in which the paramics--and hence the components of grad
e--are nondimensional. (The advantages of S are especially compelling
in the steepest descent technique, some of whose properties are not
scale-invariant.)

To achieve the desired paramic transformation from S to S, we note
from Eqs. (46) that

[akk]d = pk- 2]d

or

[(akk) P = 1 (48)

That is, the bracketed quantity in (48) is nondimensional. Thus the
paramic transformation

Z (akk (49)

creates the desired* paramic space S. The elements of A and B in S are

*From Eq. (47), we see that the product bkPk is also nondimensionaZ.
Thus, the transfornation ~

Pk = bkPk
seems appeczZinq; it would lead to a space in which all components of g
are unity. Thk op/, however, is il'hasory. ft would not be o'ery
wise to use as scale factors the very quantities b that we are tryi il
to drive to zero. The scalr factors (a kk) 2, on the other hani, are

never zero (sc E. (46)).
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ajk = (a.jj akk) ajk (SO)

bk = (akk-½ bk (51)

These space S components have the following admirable features:

Mi) pk$ a jk and bk are nondimensional;

(ii) the diagonal elements of matrix A are unity:

akk = 1 (52)

(iii) the off-diagonal elements of A satisfy the inequality:

-1 < ajk < 1 (53)

Finally, the form of matrix equation (45) is unchanged:

the subscript S serving to remind us that all components are now in
the scaledparamic space. Ninety-nine percent of the labor in solving
(54) for 0-is usually expended in inverting matrix A. Use of the
scaled components ajk tends to increase the accuracy of the matrix

inversion process.

Note that each scale factor (akk)½ in (49) is a function of point

P, the current set of paramic values. Hence each time the paramics
are up-dated, a new transformation must be made: a new S space
created. 'his i -no big problem for a computer. FINLIF nandles the
scaling to space S and back again to the user's space S; the process
is automatic and invisible (in computer jargon, "transparent") to the
user.

I. Steepest Descent

Consider a given point P0 and the corresponding vector B(po)

proceeding from that point. Recall that 9 at any point is a vector
in the direction of the negative gradient of e at that point. Hence,

provided that the magnitude of A(Po) is not zero (if it were, P would
0

be the desired solution P), (Po0) is the steepest descent vector for

point P0 : a vector in whose direction c(P) will decrease most rapidly

(at least at first) as we move auay from P0. Let P1 be any other point
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in this steepest descent direction:

1 : + h 0(P) (5S)

where h is a nondimensional positive constant.

There always exists a range of h values, 0 < h < hmax. for which

the point P1 obtained by (55) is an i-bprovoment: c(P 1 ) < £(P0). The

steepest descent method determines the optimum h in this range: the
value of h for which c is a local minimum alonig the vector V(P0 ). This
can be done by evaluating P1 and [(P1) for a series of h values:
h < h1 < 11 < . . . Presumably, for a while c will decrease with

0 1 2
increasing h. As soon as an h is found for which the E has increased,
the (approximately) optimum h for point P0 can be determined by
interpolation.

Given the new point P1 based on this optimum h, the next point

P2 will lie in the direction of steepest descent from P1; that is,

along the new vector k(P ). Another optimum h must be determined to

obtain P And so on to P.

The difficulty with this approach is that in the neighborhood of
the solution poipt P, where 1ý1 is nearly zero and yet we are not quite
close enough to P to be able to quit with honor, further progress
is painfully slow. Often the sampling size on h, the Ah intervals,
must be shortened beyond all endurance in an effort to find a P1
for which E(PI) < E(Po). Ingenious variations on the basic steepest

descent theme have lessened but not removed this difficulty.

J. Marquardt Interpolation in Space

The two fitting techniques we have discussed so far are:

(i) differential corrections, which in space S is based on matrix
equation (54); this equation has the component form

N

akn (P) AFPn k(P) (S56)

n=l
: ~[k=l, 2, .. N]

(ii.) steepest descent, based on the vector equation (55), which

in space S nas the component form
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Apk hbk(p) (57)

[k=l,2,...N]

Comparing these two methods, we note that:

(a) Far from the solution point, the steepest descent
technique is superior. It must proceed so as to decrease
e, whereas the differential corrections method is under
no such compulsion and is likely to lead us into strange
pastures.

(b) Close to the solution point, the differential corrections
method is superior. It converges rapidly in the very
region where the steepest descent technique languishes.

Marquardt* has proposed an interpolation between the two methods:
a technique that behaves like the steepest descent when we are far from
the solution and like the differential corrections method when we
enter a neighborhood in which the higher-order terms in Eqs. (33) and
(34) are negligible,

To achieve this interpolation, a positive nondimensional constant
A is added to each diaLLonal element of the scaled matrix A. That is,
the system (56) is replaced by

N

Sakn (P) Ap = bk(P) (58)

n=l

where

an 1 l+ Xwhen k=n a(9i -• akn(59)

= a when k#n
kn

System (58) is the bedrock upon which the FINLIE fitting process rests.
Note the behavior of this system as a function of X:

(a) As X-+O, system (58) clearly reverts to the differential
corrections system (56).

(b) As X4 -: the diagonal terms of system (58) dominate and
the system degenerates into N uncoupled equations of the form

(1 + X) Apk = bk

*See the Bibl-ioogrphy, part A.
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or, since by assumption X>>I,

APk X- k (60)

Comparing (60) with (57), we see that for large A values, system (58)
simulates the steepest descent approach with h=X- . That is, for
X>>l, (58) will take us to a new point a rather short distance from the
current point P in the direction of the negative gradient.

Marquardt has suggested an algorithm for determining a suitable
value of X for each iteration; that is, for each step P0 to PlA P1 to

P'2 etc., on the path to the desired solution point P. This algorithm
(with a few very minor "refinements") has been incorporated into
FINLIE. The basic scheme is as follows.

For the first iteration, P0 to P' FINLIE assigns a tentative value
to X:

(starting X) = 0.001 (61)
P0 toP 1I 1A

Let PIA denote a candidate for point P1V obtained by solving (58) with

P=P0 and ?=X1A:

lA = 0+ AP(Po0XlA) (62)

The basic test that any point P should pass is that it be an improve-

ment over the current point:

C(P) < E(P0 ) (63)

If PIA satisfies test (63), then FINLIE returns that point to the user

as the updated point P1 and is ready to start the next iteration, PI to
P.2

If P!A fails test (63), then FINLIE must take a smaller step in a

more propitious direction. This can be accomplished by increasing X.
That is, FINLIE re.-solves system (58) with P=P as before, but with
X increased to, say,

XlB = 10 XA (64)

(Note that in re-solving the system (58), the elements akn (kin) and

ak do not have to be re-evaluated. They depend only on the current
point and thus are evaluated only once each iteration.) The new
increment vector for XlB yields the new candidate point:
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1B 0 + 1P (Pod•IB) (65)

If PIB satisfies test (63), then FINLIE returns this point to the
user; if P1B fails test (63), then FINLIE increases X again by a factor
of ten, and so on. Sooner or later, an acceptable candidate will be
found:

*I = P0 + 1p (PO10 nXlA) (66)

where n is zero or a positive integer.

The cost-conscious reader may ask: if P1A fails test (63), why not
skip over a possibly long line of rejected candidates by increasing Aby some factor much larger than ten? This should get us to an accept-
able candidate point at once or at least in fewer trials. True, but
the general principle is this: the larger the A, the smaller the
progress we are making. Hence we don't want FINLIE to use a A "very
much" larger than needed to satisfy test (63). It is not worth the
effort to find the optimum X for each iteration, but by testing after
each ten-fold increase in X, FINLIE will not grossly exceed that op-
timum. (Indeed, a case could be made out for merely doubling A each
time an increase is required.)

The only way in which the second and subsequent iterations differ
from the first is in the formula FINLIE uses for determining the start-
ing X value for the iteration:

(starting X)p to P = 0.1 x (final A value used to (67)n-l n produce point Pn-1 in

the previous iteration)
That is, FINLIE always decreases the current value of X by a factor of
Ltn at the start of each new iteration. This decrease is an essential
part of the X manipulation. When all is going well, FINLIE will have
no need to increase A; thus rule (67) will insure that A goes to zero -
nnd hence that the process approaches the differential corrections
technique - as FINLIE approaches the solution point P.

A typical set of X values encountered in the course of some
hypothetical fit (not our familiar examples, (3) and (4)) is shown in
Table V. The reader can infer from these X values the fleeting
existence of rejected candidate points. Thus, to get from P2 to P3
FINLIE clearly had to solve system (58) six times: for X=10 4 (that is,

30 -2 -l 0one-tenth the previous A), 10-, 10 , 10 , 10 and 10 (the A valuethat produced a successful candidate). Similarly, to get from P5 to P6P
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TABLE V. Typical X Values During a Fit

X value returned No. of times system (581
by FINLIE at the must have been solved by

Iteration end of the iteration FINLIE

PO to P1  10"2 IL
P1 to P 2  10"3 1

P2 to P3  101 6 (for )•=10"4 10"..11

P3 to P4  100 1

P4 to P5  10"1 1

P5 to P6  10-1 2 (for N=IO02, 10- .1

P6 to P7  102 1

P7 toP8  1 1

P8 to P9 10-4 1

P9 to PIO 10-2 1

p to Pl 10-4 1

8 95

P•; to. "P••"' lo -= S 1 -• •=-i ' ' ... I • • =w••:= l'• "



-2 -'

FINL!E must have solved (58) twice: for X=10 and 10 . Thereafter,
the fitting process seemed to get back on the track and X decreased
steadily. Without Marquardt's X in the system, it is likely that the
search represented by Table V would have gone astray after point P2 and
come to some abrupt and ignoble conclusion.

K. Convergence Crliterion

The question arises: waen can the user accept a point returned by
FINLIE as being "close enough" to the desired solution? One possible
answer is: when FINLIE tells him he can. At the end of each iteration,
FINLIE returns to the user a flag whose value indicates whether oT not
the returned point has satisfied a built-in convergence criterion.
(This flag will be discussed in section III(C).)

The convergence criterion installed in FINLIE is as follows. Let
P . and be any two consecutive points returned by FINLIE: the
e points n of two consecutive iterations. Then FINLIE will signal
convergence at point Pn if and only if

0.99999 < £(Pn)/E(Pn-l) < 1 (68)

The right-hand portion of this double inequality is essentially
inequality (63) and hence is always satisfied, thanks to the Marquardt
X feature. The left-hand inequality in (68), however, constitutes
an arbitrary definition of convergence: namely, that the percent
change in e has dropped below 0.001.

As an example of criterion (68) in action, consider the search
summarized by Table II. The values of CRE(P n)/6(Pn_ ) listed in the

next to last column of that table jump about erratically (always
between 0 and 1, of course) before the criterion is satisfied at point
PT" The sudden transition from the value of CR at P6 to its value at

P7 is not typical. In searches based on more realistically inaccurate

measured data, CR will often be close to - and monotonically approach -
the value 1 over the final few iterations.

Note that (68) is only a measure of convergence tu a local
minimum. We have said it before, but it bears repeating: there is no
guarantee that the point Pn satisfying (68) will yield the desired
absolute minimum c.

Of course, the user need not accept definition (68); he can ignore
the FINLIE convergence flag and impose his own convergence test on the
data returned by FINLIE after each iteration.
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L. Estimated Errors

In addition to computing the estimated standard deviation of the fit:

L C* J (69)
FINLIE computes sk' the estimated standard deviation of paramic Pk'

k=l,2,...N.

For linear least-squares, the conventional formula is

sk 1[•kk] s (70)

where

k =the k-th diagonal element of the inverse
of the unscaled matrix A.

Note that while s is nondimensional, sk has the same dimensions as
Pk"

For nonlinear least-square fits, Eq. (70) should be viewed with a
healthy suspicion. Indeed, CelmiV (Ref. 33 in the Bibliography) points
out that even in the linear case, the equation should be applied only
in "very limited special cases." Unfortunately, the alternative formula
that he develops for sk is a rather complicated one involving second-

order derivative terms - terms that so far we have managed to avoid.
The inclusion of these terms would mean more work not only for FINLIE -
which would be acceptable - but for the user, who would have to derive
and program some possibly horrendous expressions. The labor here
seems out of proportion to its reward, since the "crude" error
estimates provided by (70) are usually not all that crude when the
search has converged to the proper point. Hence FINLIE returns these
estimates to the user and the user is expected to provide his own grain
of salt.

(Note that (70) uses only the diagonal elements of the inverse
matrix. In some situations, all of the elements of A- are useful

-1 2
for error analysis. In these special situations, A s can be regarded
as the variance-covariance matrix. However, for nonlinear least
squares, we are pushing our luck in making use of the diagonal elements;
to try to assign any significance to the off-diagonal "elements would
really be folly.)

Recall that FINLIE transforms the elements of matrix A to the
scaled space g, Eq. (50), and then replaces the diagonal elements by
1+X. Hence FINLIE actually obtains the paramic error estimates by the
relation
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Sk (71)ka kk

where

Akk = the k-th diagon4l element of

the inverse of matrix {akn}, Eq. (58)

(I felt there should be some compensation in the error estimate
formula for the presence of Marquardt's X in the equations. By a chain
of nonrigorous reasoning, I was thus led to insert the (l+X) factor in
(71). Since X<<i for a good fit, (1+X) seems relatively harmless
sitting there.)

M. The Composition of FINLIE

So far, the word FINLIE has denoted an apparently monolithic
program. Actually, for reasons that seemed persuasive at the time,
FINLIE was written as an assemblage of six linked FORTRAN subroutines:

DUBLIN, LONDON, PARIS, BONN, MATINV, MERSO

only one of which - DUBLIN - is called by the user. "FINLIE", then,
is merely a convenient name for an ensemble of six subroutines.

[FINLIE is also the name of a permanent file (in Update format)
stored on the front end of BRL's Control Data Corporation computer
system. (At BRL, this system consists of two linked mainframes: the
CYBER 170/Model 173 and the CYBER 70/Model 76.) File FINLIE contains
five of the six subroutines: all but MATTNV, which is already available
from a system library.]

The relationship between

(i) the user's program that calls FINLIE,

(ii) FINLIE

and (iii) the user's subroutine defining his equations,

and the inter-relationship of the six subroutines that constitute
FINLIE are all indicated in Figure 1. A vertical bar between two
subroutines in the figure indicates that the upper subroutine calls
the lower one.
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All six subroutines of FINLIE are listed in the Appendix. Only

four of the six - the four "cities" - were written by the author; the

other two (namely, MATINV and MERSO) are general-purpose subroutines
to be discussed shortly.* With some minor exceptions in subroutine
MERSO (these will be spelled out), the FORTRAN used in FINLIE is a
"more or less standard" version of FORTRAN IV (alias FORTRAN 4, alias
FORTRAN 66).

Converting FINLIE to a later model FORTRAN - say, FORIRAN 77 -

should be relatively uneventful. One possible difficulty is as follows.
FINLIE was written for a compiler that automatically retains the values
of entities defined within a subroutine but not linked to the calling
program. For such a compiler, subsequent calls to the subroutine will
find the previous values waiting. However, in FORTRAN 77 the SAVE
statement is available for specifying what if anything is to be retained;
hence some FORTRAN 77 compilers may not automatically retain local
values. In that case, it way be necessary to SAVE the arrays ALPHA and
BETA in subroutine DUBLIN.

DUBLIN is the interface between the user and FINLIE. The user must
write the FORTRAN program that calls subroutine DUBLIN with the
required input data. Hereafter, we will refer to (and think of) the
user's calling program as a main program, although it could itself be a
subprogram. Each time that DUBLIN is called by this main program,
DUBLIN activates the other subroutines of FINLIE, causing one iteration
of the search procedure to be carried out. That is, if the main program
submits point P n- to DUBLIN, DUBLIN will return to the main prugram

the next point Pn* itnformation and advice on writing the main program

and in particular on calling DUBLIN will be given in overwhelming detail
in Part III.

Subroutines LONDON, PARIS and BONN are buried within FINLIE, so that
their individucl purposes should be of little significancc to the user.
However, the following features of PARIS can be noted from Fig. 1. If
the user is fitting a set of differential equations, PARIS calls a
numerical integration subroutine MERSO (of which more will be said
shortly) and NiERSO in turn calls the subroutine - written by the user
and arbitrarily labelled ROME in the figure - that defines the
differential equations to be fitted. On the other hand, if the user
is fitting algebraic or transcendental equations, PARIS calls the user's
equation-defining subroutine ROMA directly. Both ROME and ROMA must
get additional information from PARIS through the labelled COMMO--

*A roýolewcr of thio 1,por questioned the i.7)'i7at!on th:t DUBLIN,

LONDON, PAPIS, and BONN are the onill "1citiee'' in thc sextup2et, of
subroutines. He went so far as to consult an atlas to Sce ýj there is (2

ton, a oizla;e, ýz hoZ cm2t or a crossroads bK' th,, none of MATINV or

a~ 'ewhŽ% ~ ;~~ ~'d.A~1HLPfl?~ hi-~ '%on 't.
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block NAPLES. ROME and ROMA mal require additional information from the
user's main program, this can be passed through the labelled COMMON
block CAIRO. Abundant details on writing ROME and ROMA and on the
COMMON blocks will be given in Part III.

Subroutine MATINV is a general-purpose matrix inversion subroutine
borrowed intact from the computer library here at BRL. Upon return from
MATINV, the input matrix has been replaced by its inverse.

Subroutine MFRSO is a general-purpose numerical integration
subroutine based on a method proposed by R.H. Merson of Australia. The
method is a fourth-order member of the Runge-Kutta famnily, requiring
five function evaluations at each integration step. The subroutine
adjusts the integration step size automatically to obtain a pi-edefined
accuracy. (All of this is transparent to the FINLIE user.)

The computar library at BRL contains a subroutine MERSON (see
References 11 and 32 in the Bibliography) for performing Merson
integration. Subroutine MERSO is identical to MERSON with the exception
of two statements. Firstly, where MERSON has

DIMENSION T(100), G(100), S(100),

MERSO has increased the thr-e dimensions to 400 each. Secondly, where
MERSON has

IF (NT.LE.lO0) GOTO 100,

MERSO compares NT with 400. The reason for these changes is as follows.
The size of the three arrays T, G and S above must equal or exceed

N5 -_ N2 + NA (72)

that is, the number of differential equations (N2) plus the number of
influence equations (NA). MERSO requires N5 <• 100. In my largest
application of FINLIE so far, N5 exceeded 100 (was, in fact, 368).
Hence the minor surgery that altered MERSON into MERSO; the maximum
permitted value of N5 is now 400. This value of 400 appears not only
"in MERSO but in PARIS, where it is the declared dimensions of arrays
U and DU (see the Appendix). Hence the user can change the upper limit
on N5 by

(i) changing the dimensions of U and DU in PARIS;

and (ii) changing the 400 in the PARIS statement that currently
reads:

IF(MS.LE.400) GOTO 24

and (iii) changing the two previously mentioned statements in
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MERSO:

DIMENSION T(400), G(400), S(400)

and IF(NT.LE.400) GOTO 100

Note that a "nonstandard" FORTRAN function appears on the line above
statement 410 in MERSO:

H = SIGNI(H) * hMI

Here SIGNI is the signum function; if it is not recognized by the
user's FORTRAN compiler, the al-%: scatement can be replaced by

IF(H.NE.0o.) H=S GN(I.,H)*HMI

The use of multiple arithmetic and logical assignment statements in
MERSO may also be unacceptable to some compilers. In a multiple
statement of the form

VN . V2 = VI = expression,

the assignments are carried out from right to left:

VI = expression
V2 = V1, etc.

It should be pointed out after all this exposition on MERSO that
when the user is fitting algebraic or transcendental equations rather
than differential equations, MERSO is not needed and may be removed
from FINLIE.

FINLIE was written for BRL's CDC computer system for which the
single piecision of real numbers is approximately 14 decimal digits.
So far, this has proven adequate for all our FINLIE applications. If
the user is working with a machine whose single precision is signifi-
cantly less than 14 decimal digits, he may have to add some double-
precision declarations to the subroutines of FINLIE. One source of
trouble is the possibly erratic behavior of e near a minimum, due mainly
to round-off noise. Hence a likely candidate for double precision
is array GAMMA in subroutine DUBLIN (and its dummy version A in
subroutine MATINV). A more complete list of variables that may require
double precision includes:

in DUBLIN: EA, EB, EPS, GAMMA
in LONDON: EP, EPS, RSQ
in PARIS: RM, RSQ
in MATINV: A, Tl

In extreme cases, the user can simply double-precision everything in
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sight; this may be inefficient in terms of storage, but it could save
wear and tear on the user.

III. OUTSIDE FINLIE: WHAT ThE USER MUST
DO FOR FINLIE

Assuming that the FINLIE user is given a set of equations of the
form (1) or (2) - or equations that can be put into one of those forms -
the first task the user must perform is to derive the associated
influence equations, as indicated in parts C and D of Section II.
The next task is to write a FORTRAN subroutine defining all these
equations - the original set and the influence equations - in a manner
acceptable to FINLIE. The rules for constructing this subroutine are
slightly different for sets (1) and (2). (We assume in what follows
that the reader has some familiarity with - though he need not be an
expert in - some version of FORTRAN equivalent to or newer than FORTRAN
IV.)

A. ROME: The User's Subroutine for Fitting Differential Equations

The first three statements of ROME have the form:

SUBROUTINE ROME(N5,XE,U,DU)
DIMENSION U(NS), DU(NS)
COMMON/NAPLES/PAR(40):, FLAG (60)

It should be noted that the only name in the above three statements
that the user is not allowed to change is NAPLES. All other names,
including ROME, may be replaced by other legal FORTRAN names of the
user's choice. (Of course, the distinction between integer and real
names should be maintained.)

ROME is called by MERSO (see Figure 1) and hence the nature of the
four arguments of the SUBROUTINE ROME statement has been decreed by
MERSO. The first three arguments are input to ROME (frum MERSO):

N5 = the number of equations to be defined in ROME: N2
(first-order differential equations) plus NA (influence
equations). Thus for sample set (3), the value of N5
is 2 + 8 = 10. Note, however, that this argument is an
integer name, not an integer constant. As certain
arrays are currently dimensioned, N5 cannot exceed 400
(see the pertinent remarks in section II(M)).
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XE = x, the independent variable value at which the N5
equations are to be evaluated. The argument, of course,
must be a real name,, not a real constant. If the
independent var TTe does not appear in any of the
equations, then argument XE will not be used in the body
of subroutine ROME.

U m the vector of N2 dependent variables and NA influence
coefficients, where

yj = U(J), (

Djk= U(J + K*N2)

[Jj-l,2,..N2
K-kl,2, . .N23]

Thus for sample set (3), where N2=2 and N23-4, we have

U(1) = Y

U(2) = Y2

U(3) = Dll = Dyl/aYlo
U(4) = D21 = Dy2 /ay 1 0

U(5) = = Dyl/IY 2 0

U(6) = D2 2 = ýy2/9Y20

U(7) = D 13 = ayl/acl

U(8) = D2 3 = ay 2/3c 1

U(9) = 04 ayl/aC2

U(10) - D = /c

The final argument of ROME is an output (to MERSO):

DU - the derivative vector at the current value XE of the
independent variable, where

DU(J) = dU(J)/dx (74)

[J=l,2, ..NS)
Additional input to ROME comes from PARIS via the labelled

COMMON block NAPLES. The one hundred elements of the NAPLES block are
as follows:

PAR = a vector of the current values of the N3 parameters
(not paramics), where N3 < 40. For sample set (3),
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PAR(l) = c

PAR (2) = c2

and the remaining 38 elements of PAR are undefined.

FLAG a vector of N23 flags (N23 < 60) associated with the
N23 single-round paramic set Q, Eq. (12). That is,
the first N2 elements of FLAG are associated with the
N2 initial conditions and the remaining N3 elements
of FLAG are associated with the N3 parameters. The
value of FLAG(J) is

(i) zero if the value of the corresponding
paramic qj is fixed;

or (ii) 1.0 if the value of q. is to be adjusted
by the fitting procesi.

For sample set (3), we have

FLAG(l) = flag for y

FLAG(2) = flag for y20
FLAC(3) = flag for cI

FLAG(4) = flag for c2

and the remaining 56 flags are undefined.

Note that PAR and FLAG are inp,1ts to ROME from FINLIE; when
writing ROME, the user assumes that the two arrays already contain
their proper values. In the case of the initial condition flags,
these value3 may change; from round to round. For example, in our
tri-round situation, we might decide to make a computer run with y10

for round El and y20 for round E3 fixed at specified values. Then
0 FLAG() = 0.0, 1.0, 1.0

FLAG(2) = 1.0, 1.0, 0.0

for rounds El, E2 and E3, respectively. FINLIE will automatically
change the values of FLAG(l) and FLAG(2) to match the round whose
measured data is currently being fitted. Of course, FINLIE can't
us what the user wants to do; it must be told. FINLIE can only
e e PAR and FLAG on the basis of certain inputs given to it by the

user's main program. These inputs will be discussed in section 11(C).

The dimensions of PAR and FLAG are arbitrary to this extent: they
can be changed in ROME if the user is willing to make all the
associated changes in FINLIE. To save space, I leave the nature of
such changes as an exercise for the interested reader. The simplest
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course is to make no changes if N2 < 40 and N23 < 60.

After writing down the first three statements of ROME, the user
is ready to encode the body of the subroutine: the statements defining
the N5 elements of output array DU. Consider, for example, system
(3). For convenience, we repeat here the original equations:

yl/ w l/y 2

y2/ -c 1 (l+c 2 y 2 )y 2

and the associated influence equations (Table III-A):

Dll)' -D2/Y2

(D2 = -c 1 (i+2c2y2D 2 1

D 2 ) 22Y2

(D22)/ -c 1(+2c 2 Y2 )D 2 2
(D 13 Y = -D 23/Y2 2

(D2 3 )' -C(1+2c 2 Y2 )D2 3 - (1+c 2 Y2y 2

(D1 4) = -D24/Y2

(D2 4 )' = -C1~l+c 2Y2 )D 2 4 - c1 (Y2 2)

For these equations, a likely version of subroutine ROME is given in
Table VI.
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Table VI. Subroutine ROME for System (3)

SUBROUTINE ROME (NS,XE,U,DU)

DIMENSION U(N5),DU(N5)

COMMON /NAPLES/ ClC2, BLANK(38), FLAG(60)

V = U(2)

DU(i) = 1./V

Al = C2*V

DU(2) = -CI*(I. + Al)*V

A2 = DU(!)**2

A3 = CI*(1. + Al + Al)

IF (FLAC(l) .EQ. 0.) GOTO 10

DU(3) = -A2*U(4)

DU(4) = -A3*U(4)

10 IF (FLAG(2) .EQ. 0.) GOTO 20

DU(5) = -A2*U(6)

DU(6) = -A3*U(6)

20 IF (FLAG(3) .EQ. 0.) GOTO 30

DU(7) = -A2*U(8)

DU(8) = -A3*U(8) - (1. + Al)*V

30 IF (FLAG(4) .EQ. 0.) GorO 40

DU(9) = -A2*U(10)

DU(10)= -A3*UJ(10) - Cl*V*V

40 RETURN

END

Note that in COMMON/NAPLES/ I opted to write the forty-element

parameter set in the form

Cl, C2, BLANK(38)

since only the first two of the forty elements have any meaning. I
could just as well have written PAR(40) in the COMMON statement and
used P.'AR(l) and PAR(2) instead of Cl and C2 in the body of the
subroutine, Note also that I dimensioned FLAG as 60 even though the
last 56 elemfcnts are meaningless. This was a courtesy to our CDC
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FORTRAN compiler,, which likes all COMMON blocks of the same name
(NAPLES in this case) to have the same length. The compiler doesn't
insist when you break this rule, but it comments on your bad form.

Because ROME will be called many times by MERSO during the course
of the numerical integration, the user should take the time to make
ROME as efficient as practicable. For large and labyrinthian systems
of equations, a worthy ROME isn't built in a day.

One of the aids to efficiency in ROME is the FLAG vector. Note
that if any paramic value is fixed during a computer run (that is, if
the associated flag value is zero), the influence equations for that
paramic need not be calculated. Hence the FLAG vector can - and in my
opinion should - be used as indicated in Table VI to avoid these
unnecessary calculations. The general rule is that if FLAG(J) is zero,
then ROME need not evaluate DU(LA) through DU(LB), where

LA = (J x N2) + 1
LB = (J x N2) + N2 = LA + (N2-1).

Of course, if the user is convinced that he will never, ever want to
hold fixed the value of some paramic, he can omit the corresponding
IF-statement from ROME.

Some systems of equations may involve constants whose values are
always fixed (that is, never adjusted by FINLIE) and yet these values
may change from run to run. It would be possible - but not too bright
to handle such i constant as a fixed parameter: a parameter whose
associated flag is always zero. A better approach is to pass any such
constant directly from the user's main program to ROME through a new
labelled COMMON block (see block CAIRO in Figure 1). Of course, if
a constant will never change from run to run, it need only be defined
within ROME.

A final, rather minor comment: Sample set (3) is one of those
cases where the input argument XE is not used in the body of subroutine
ROME, simply because the independent variable does not appear explicitly
in the N5 equations of this example.

B. ROMA: the User's Subroutine for Fitting Algebraic or Transcendental
Equations

Many of the comments in the previous section concerning ROME apply
to ROMA as well. Hence, if the reader has skipped over that section
because his interest in fitting differential equations is minimal,
he may have missed something noteworthy. Or possibly not.

The first three statements of ROMA have the form:
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SUBROUTINE ROMA (COND,XO,XE,U)
DIMENSION COND(n2), U(n5)
COMMON/NAPLES/PAR(40), FLAG(60)

The first three arguments in the SUBROUTINE statement are inputs
(from PARIS):

COND = a vector of N2 current initial condition values. For
sample set (4),

COND(l) = ylO

COND(2)

For multi-round situations, the initial conditions
change with the round as well as with the current state
of the fitting process. FINLIE supplies the proper
COND vector to ROMA automatically.

XO =X0, the independent variable value at which the initial
conditions apply. (This one value must apply to all
rounds.)

XE = x, the independent variable !alue at which the equations
are to be evaluated.

The final argument, U, is an output vector defined exactly as in the
previous section for subroutine ROME.

In the DIMENSION statement, n2 and n5 denote the values of N2 and N5,
respectively. (Actually, on the CDC system and on most other computers,
a one-dimensional argument array in a subroutine need not be declared
at its maximum size; the value 1 is adequate.)

The labelled COMMON block NAPLES brings to ROMA the arrays PAR
and FLAG, defined in the previous section.

The body of subroutine ROMA consists of the statements defining
the needed elements of array U. Consider, for example, system (4).
For convenience we repeat here the original equations (4) and the
needed influence equations (Table III(B)):

Y] = Y10 - c2(x-xo) + (b/c )(u-l)

2 (bu - c

D = 1

D12 (u-l)/(clY2 0
2 )
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D13  = (b/cl2 )[l-u+cl(x-xO)u]

D14 = (u-l)/cI - (x-x 0 )

where
u = exp [cI(x-x 0 )]

b = (y 2 0 )-I + c2

For these equations, a likely version of subroutine ROMA is given in
Table VI1.

Table VII. Subroutine ROMA for System (4)

SUBROUTINE ROMA (COND,XOXE,U)
DIMENSION COND(2),U(10)
COMMON /NAPLES/ Cl,C2, BLANK(38), FLAG(60)
TO = COND(l)
VO = COND(2)
XA = XE - XO

Z = EXP(CI*XA)
B = C2 + 1./VO

U(1) = TO - C2*XA + B*(Z - 1.)/Cl
U(2) = l./(B*Z - C2)

IF (FLAG(l) .NE. 0.) U(3) = 1.
IF (FLAG(2) .NF. 0.) U(5) = (I. - Z)/(CI*VO**2)
IF (FLAG(3) .NE. 0.) U(7) = B*(l. - Z + CI*XA*Z)/(CI**2)
IF (FLAG(4) .NE. 0.) U(9) = (Z- 1.)/Cl - XA
RETURN
END

As discussed in section II(D), FINLIE does not require expzessions
for the influence coefficients Dik when j is greater than Ni. Hence

in this sample ROMA, where NI=l, the D2 k equations (namely, the equations

for U(4), U(6), U(8) and U(10)) are simply omitted from the subroutine.

As with ROME in the previous section, the FLAG array in ROMA is

used to avoid calculating D wher the value of paramic q is fixed.
Also as with ROME, any needed "changeable constants" can be passed
directly from the user's main program to ROMA through, say, the
labelled COMMON block CAIRO.
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C. Calling Subroutine DUBLIN

After the user has written his subroutine defining the equations
to be fitted, his next task is to write a program unit we assume a
main program - that utilizes FINLIE. Before discussing this main
program as a whole, we will concentrate on one statement within that
main program: the CALL DUBLIN statement.

This statement is the link between the user and FINLIE. It can be
written in the form

CALL DUBLIN (ROME,NF,N1,N2,N3,N7,NS,NR,NM,XO,
X, Y, F,NW, W,P, RL,NC, YC, R, RS,E•PS,

SIG,EK,NS)

where all integer names happen to start with the letter N. The first
fourteen of the twenty-five arguments are inputs.

[1] ROME is the name of the subroutine (written by the user) that
defines the equations to be fitted (See sections
IIT (A-B)).

The values of the remaining thirteen input arguments must be established
in the user's main program before DUPLIN is called. These values will
not be changed by FINLIE; hence actual values rather than names may be
used for arguments [2] through [8], [10] and [14] below.

[2] NF is a flag that indicates the nature of the equations
to be fitted:

NF=0 if the fitting equations are algebraic or
transcendental (System (2));

NF=l if the fitting equations are differential
equations (System (1)).

[3] Nl is the number of measured dependent variables in the
system, where

1 < NI < 10 (75)

(The upper bound on Nl - and the upper bounds indicated
for some of the other arguments defined below - can be
increased only by delving into FINLIE.) Nl must have
the same value for each round; FINLIE insists that the
same dependent variables be measured for each round used
in the fitting process.

[4] N2 is the total number of dependent variables in the system,

where
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Ni < N2 . 20 (76)

[5] N3 is the maximum number of parameters (not paramics) whose
values can be determined from the fit, where

0 < N3 < 40 (77)

I use the word "maximum" above; because the actual number
of parameters to be determined in the course of a computer
run may be less than N3. The user specifies (by argument
F, to be discussed below) which, if any, of the parameters
ana initial conditions are to be held fixed at their input
values and which are to be adjusted by FINLIE during the
run. Input N3 is the total number of parameters: those to
be adjusted plus those held fixed. (If input N3 is zero -
the lower limit in inequality (77) - then presumably
there is at least one initial condition to be determined;
otherwise there would be no reason for running the
program.)

[6] N7 is the number of rows declared in the user's main
program for the two-dimensional arrays Y, W and R defined
below as arguments [12], [15] and [20], respectively.
As we will see, these three arrays serve as NI by N4
matrices. At first glance, thep, it might seem that
N7=Nl. However, the user may not want to restrict his
main program DIMENSION statement to the current values
of Nl and N4. It is often more convenient to dimension
arrays at their largest anticipated sizes. For example,
in our recurring case where Nl=l and N4=16, the user
might want to dimension arrays Y, W and R as, say (2,50)
rather than (1,16). FINLIE will go along with this sort
of thing, but it wants to be told about it. Thus if the
user dimensions Y, W and R as (2,50), he must set r47
eoual to 2. In general, then, N7 > NI. (The declared
column dimension for the three arrays - say, 50 - is not
needed by FINLIE. The declared row dimension is
sufficient - assuming the computer stores matrices in the
usual way, that is, by columiis - to maintain notational
row-column agreement between calling program and
subroutine. Neither is FINLIE interested in the dcclared
dimensions of its vector arguments.*)

*-r. FTNTLIE, I have declared 1 as the last (right-most) dimension of
subroutine dnirny argwnent arrays. This is fairly conrnon FORTRAN 4
practice, bat FORTRAN 77 prefers an asterisk: Y(N7, *) instead of
Y(N7, 1).
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[7] N8 is the number of rows declared in the user's main

program for the two-dimensional array YC defined
below as argument [191. Array YC serves as an

N2 by N4 matrix; hence N8 > N2. (See the comments
for argument F6] above.)

[8] NR is the number of data rounds to be considered
simultaneously, where

II < NR < (60-N7)/N2 (78)

The right-half of this double inequality may seem a
rather strange condition to spring upon the reader.
Until now, no limit has been implied on the number of
rounds. The basic condition (somewhat concealed in
(78)) is

N 4 60 (79)

where N is the total number of paramics, (NR x N2) + N3.

Condition (79), like the limits on NI, N2 and N3, is a
result of arbitrary DIMENSION decisions that had to be
made when constructing FINLIE. Since N is not itself
an input to DUBLIN, I have simply converted (79) to the
equivalent form (78). By satisfying (78), the user can
be sure that (79) is also satisfied. For sample set (3)
or (4) we must have NR < (60-2)/2=29. For the
associated data of Table I, we have NR=3, well below the
maximum permitted. Recall that the data for an
individual round solely determine the initial conditions
for that round, but combine with the data from all the other
rounds to determine the parameters.

[9] NM is a vector of NR elements, where

NM(J) = the number of data points Rm (that is, the

number of independent variable values xm at

which measurements were taken ) foi the J-th
round.

Thus for the sample data of Table I, the user's main
program must set

NM(I) = 5
NM(2) = 6
NM(3) = 5

FINLIE determines N4, the total number of data points,
by summing the NM components:
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NR

N4 = NM(,J) (00)

J;!

The user must insure that N4 satisfies the inequalities

N < N4 < 1000 (
N4xN5 < 10000

and that
Ni x (MAX.ELEMWNT OF NM) < 200 (82)
N2 x (MAX.ELEMENT OF NM) < 400

Again, these restrictions are the result of arbitrary
DIMENSION statements in FINLIE.

[10] XO is the independent variable point x 0 at which all
initial conditions apply. The same x 0 must apply to
all rounds.

[11] X is a vector of the N4 independent variable values
x at which measurements were taken. The first NM(l)m
values in X are the first-round values, in increasing
order:

X(M-1) < X(M), M = 2,3,...NM(l)

The next NM(2) values of X are the second-round values,
also in increasing order among themselves:

X(M-1) < X(M), M - NM(l) = 2,3,...NM(2)

and so on. For the Table I data, we have

X(M) = xm, m = 1,2,. .. 16.

[12] Y is an Nl by N4 matrix of measured dependent variable
values, where

Y(I,M) = the measured value of y, at X(M)

For the Table I data, we have Y(1,M) = ylm' m=l,2 .... 16.

[13] F is a vector of N flags associated with the paramic point
P (argument [16] below), where
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F(J) = 0.0 if the input value of P(J) is to
be held fixed;

= 1.0 if the input value of P(J) is to be
adjusted by the fitting process.

[14] NW is a weight flag associated with matrix W (argument [15]
below).

NW = 0 if the user's weights (already stored
in matrix W) are to be used by FINLIE;

= 1 if all weights are unity (in which case,
the user need not store 1.0's in
matrix W before calling DUBLIN).

Recall the comments in the vicinity of Eqs. (8) and (9)
regarding weights. the important point is that the
"easy" way out - assigning unit weights, merely by
setting NW=I - will often lead to a poor fit. Give
some minimum consideration to the possibility of
unequal uncertainties in the measurements, particularly
when more than one variable has been measured (NI > 1).

The fifteenth argument of DUBLIN may or may not be defined by the
user before DUBLIN is called:

[15] W. is the NI by N4 matrix of weights associated with input
Y (argument [12] above). The user has a choice to
make. If each of the Nl by N4 measurements in matrix
Y can be assigned unit weight; that is, if

W(I,J) = 1.0

then the user need not define the W array. Simply set
NW (argument [14] above) to 1. If, on the other hand,
the user decides that one or more of the weights must
differ from 1, then the user must define t:e entire
array, subject to the conditions that each weight be

nonnegative and that

[W(I,J)]d = [l./Y(1,J) 2d

See the comments near Eqs. (8) and (9).

The next three arguments of DUBLIN are input/output. That is, the
user must define them before the first CALL DUBLIN statement, but
FINLIE will change their values.
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[16] P is the current N-dimensional paramic point P, Eq. (5),
where

P(l).. ........... ..P(N2) = first round initial
conditions,

P(l+N2) ......... .. P(2*N2) = second round initial
conditions,

P(I+(NR-l)*N2) . . P(NR*N2) = last round initial

conditions,

P(I+NR*N2) ..... P(N) = the parameters.

Thus for sample system (3) or (4) and for tri-round data,
the eight elements of P are given by Eq. (10). Clearly,
P is the essential argument in the CALL statement; the
other arguments play a necessary hut supportive role.
As indicated in Part i of this report, an effort should be
made to find suitable starting values for the elements
of P. Not all first estimates will lead to the right
answer. Each time the program ieturns fiom DUBLTN,
array P will contain an updated point. More precisely,
the first call to DUBLIN is a special situation and P is
unchanged upon return. Thereafter, each call serves to
update P. For more on this first call, see argument
[18] below. In general, then, each DUBLIN call after the
•'irst advances P cne step on the road to the solution.
DNSM should be called repeatedly (say, in a DO-loop)
until convergence is achieved. Not all elements of P
will necessarily change with the iteration. If input
F(J) is zero (see argument [13] above), then the original,
user-assigned value of P(J) will be maintained no mattei"
how many times DUBLIN is called.

[17] RL is a Marquardt argument. Before DUBLIN is called the
first time,

(i) Set RL 0.0 if the Marquardt algoritnm is to be
omitted from the fitting process
(that is, if the user wants FINL2E

to fit by differential corrections,
Eq. (56), rather than by Marquardt
interpolacion, Eq. (58)). In this
case, RL will remain at zero.

(ii) Set RL 1.0 if the Marquardt algorithm is t- be
used. Upon the first return from
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DUBLIN, RL will have the "starting"
X value of 0.01. (On subsequent
calls to DUBLIN, the input val, • of
RL is immediately divided by ten;
hence the true starting va.'ie of X
is 0.001, as indicated in Eq. (61)).
Upon the second and subsequent
returns from DUBLIN, RL will have the
value of X used to obtain the point
returned in array P. Note that
since FINLIE changes RL, a name (not
the value 1.0) must be used-ithe
CALL list.

[18] NC is a "first call" flag. The user must set NC=O initially.
This value alerts FINLIE to the fact that it is being
called for the first time. FINLIE behaves differently
on this first call than it does on all subsequent calls.
In particular, on the first call, FINLIE

(i) sets all elements of argument W to unity if
NW=l;

(ii) sets argument RL to 0.01 if the input RL is 1.0
(that is, if Marquardt's algorithm is to be used);

(iii) determines the number of paramics to be adjusted
(the total nu.ber minus the number of paramnics
held fixed) and stores this value bac' k in
argument NC (hence use a name, not the integer
zero, for the "first call" flag in the CALL list);

(iv) evaluates the next five arguments in the CALL
list (YC,R,RS,EPS and SIG, all described below)
at the input point P0 .

0'0Note that FINLIE does no t update the iniput point Po0 on

this first call: P0 goes in and P0 comes back. The

paramics are updated only on the second and subsequent
calls.

The remaining seven arguments of DUBLIN are outputs, evaluated at
the zurrent value of P.

[19] YC is a,, N2 by N4 matrix of comuted dependent variable

values, based on the curren-tt p-•-t P, where

YC(J,M) = the computed value of yj at X(M)

Thus for the "fable I data in our examples,

S.7



YC(OM " Yl (xm'Pl

YC(2,M) = Y2 (Xm'P)

:: ~~~[m=12.1]

When fitting differential equations, FINHIE obtains the
YC values by numerical integration of system (1); when
fitting algebraic oar transcendental equ-at:Lons, FINLIE
obtains YC directly from the equation set (2)..

(20] R is an Ni by N4 matrix of residuals of the fit, where

R(I,M) = Y(I,M) - YC(I,M) (83)

[21] RS is a vector of N1 nondimensional error measures
associated with the NI measured dependent variables,
where

RS(1) = that part of E (see Eq. (7) and argument
[22] below) that can be attributed to the
fit on yi

N4
S22

W(I,M) [R(XM)]2 (84)

M=1

[22] EPS is e(P), the nondimensional sum of the weighted squares
of the residuals of the fit (Eq. (71), where

NI

EPS RS(I) (85)

If the Marquardt feature is being used (see argument
[17]), then after the first call, DUBLIN should return an
EPS no greater than the input EPS.

[23) SIG is the estimated standard deviation of the fit
(Eq. (69)), where

SIC E N- S --- (86)

[24] EK is a vector of crude estimates of the errors in the N
paramics of point P, where

EK(K) = the estimated standard deviation
in paramic P(K)



S as defined in Eq. (71)

[2n] NS is a convergence flag. Before returning to the user's
muain program, FINLIE will set

HS=0 if the process has not yet converged by criterion
(68), but there is still hope. FINLIE is saying
in effect, "Nothing obvious has gone wrong yet
so give DUBLIN another call."

NS=I if all output arguments (except this one) are
invalid. Usually this happens when some input
argument is invalid. (FINLIE performs a few
simple checks to spot invalid inputs.) If
DUBLIN returns an NS value of 1, the main program
should take some special action (e.g., STOP).

NS=2 if the latest iteration has satisfied convergence
criterion (68). If the user is willing to accept
this criterion, his main program should step
calling DUBLIN when NS=2. If the user is
imposing some more stringent convergence
criterion of his own, he should regard NS=2 as
having the same meaning as NS=O.

To illustrate the use of these twenty-five arguments, consider our
sample systems (3) and (4) with three-round data. Assume that in the
calling program, arrays Y, W, R, and YC have been dimensioned as
(2,50). Then for system (3) and subroutine ROME, we can write

CALL DUBLIN(ROkvE,1,i,2,2, 2,2,3,NM,O.O,X,Y,F,] ,W,P,RL,NC,
YC,R,RSEPS,SIG,EK,NS)

For system (4) and subroutine ROMA, only the firs;t two arguments above
are changed:

CALL DUBLIN(ROMA,0,...)

D. Writing the Program that Calls DUBLIN

In this final section, a typical main program for utiiizing FINLIE
is broken down into six steps. Some of these steps are essential,
others are optional.

Step__(). Dimension all ten arrays appearing in the CALL DUBLIN
statement:

Di),•NS!ON NM(nr), X(n4), Y(nl,n4), F(n), W(n],n4),
P(n), YC(n2,n4), R(nl,n4), RS(nl), EK(n)
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where small-letter dimensions above denote censtants no less than the
values of the corresponding capital-letter names. That is, nr > NR,
etc. As we have mentioned, it is often useful %o dimension arrays larger
than their current working sIzes. For example, in our tri-round test
cases (3) and (4), we might write:

DIMENSION NM(S), X(SO), Y(2,5O), F(S), W(2,50), P(8), YC(2,50),
RC2,5O), RS(2), EK(S)

This would allow for up to five rounds (nr=S), fifty measurement points
(n4SO) ad two measured vari les (nl-2). Noteltiat the values given to
the row sizes nl and n2 in this DIMENSION statement become the values
of arguments N7 and N8 when DUBLIN in called. On the other hand, the
dimensions allotted above to the vector arguments and to the columns
of the matrix arguments are of no interest to FINLIE.

Step (2). Declare in an EXTERNAL statement the user subroutine
whose name will be passed to DUBLIN. Thus for sample set (3) and the
corresponding ROME (Table VI), we would write

EXTERNAL ROME

and sirilarly for set (4) and ROMA.

Step (3). Establish initial values for seven DUBLIN arguments:

NM, X,Y,F,P,RL,NC

and if necessary, for an eighth argument: W. There is no standard
coding for obtaining the values of these arguments; the technique will
vary with the situation. For example, initial estimates for array P
might be read in at this stage, or they might be obtained by calling
some subroutine whose sole purpose is to derive adequate estimates
from the data. For simplicity, let's assume that in our main program
for sample set (3) or (4),

(a) the arrays NM,X,Y,F and P are read in;

(b) RL and NC are defined explicitly:

RL= 1.0
NC =0

(c) array W is not defined (since argument NW will be I inF the CALL statement).

Note that the values of the remaining nine input arguments:

NP, NI, N2, N3, N7, N8, NR, XO, NW
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can be established in the CALL DUBLIN statement itself.

Ste_ 4 Write column headings for everything of interest that will
be de Te -- at the end of each iteration. Of course, "iinterest" is
subjective. One user may want a detailed print-out of the progress

A

from P0 to P; a less inquisitive user may care only for what pertains to

the final, converged point. Personally, for each iteration, I like to
see:

(a) the iteration number i (i=0,1,2,...)

(b) the N elements of point Pi

(c) the value of Marquardt's X required to produce Pi

(d) the residual function E(Pi) and/or the standard deviation
of the fit s(Pi).

These desiderata, then, determine my column headings. (Of course,
if what I want to see can not be conveniently spread across a single
"output page, then some of the results of each iteration have to be
saved - by storing them in additional arrays - so that they can be printed
later on a second page.)

Step (5). Program the DO-loop that calls DUBLIN. For our sample
set (3), we might write:

DO 60 K=1,26
CALL DUBLIN (ROME,I,l,2,2,2,2,3,NM,O.0,X,Y,F,

1,W,P,RL,NC,YC,R,RS,EPS,SIG,EK,NS)
NPOINT=K- 1

WRITE(6,100) NPOINT,PRL,SIG
IF (NS-1) 60,70,80

60 CONTINUE
"WRITE (6,101)

C --------The above is a warning that the process has
C -------- failed to converge in 25 iterations.

GOTO 80
70 WRITE (6,102)

C -------- The above is a warning that something is wrong.
STOP

80 CONTINUE

In the above code, DUBLIN will be called until output argument NS
equals 1 or 2, or until the DO-loop variable K exceeds 26, whichever
occurs first. (The limit 26 - that is, 25 iterations - is arbitrary;
1 is not enough, 1010 is too many.) After each iteration, we obtain a
print-out - presumably under the proper column headings - of NPOINT
(the number of iterations), the N elements of the current point P, and
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finally the X and s values at the current point. The first line of
this print-out, where NPOINT-O, gives the initial estimated values of
the paramics. If NS-l at the end of any iteration, the program stops;
otherwise the program moves eventually to statement 80. Note: the
principal results of the fitting process are the final printed values
of the N paramics. All else is in a sense window-dressing.

Step (6). Write anything else of interest. My usual scheme is as
follows:

(a) aligned under the final paramic values (but with one
line skipped for clarity), I write the corresponding crude error
estimates contained in array EK. (If flag array F is of interest, the
elements of F can be written on the next line, again aligned under the
corresponding paramic values.)

(b) on a new output page, I write the values stored in arrays
X, Y, YC, R and (possibly) W,

one line for each X value. (In multi-round fits, I skip a line for
clarity at the end of the data for each round.)

(c) wherever convenient, I write the suitably labelled values
of some or all of the following:

Nl,N2,N3,N4,N,NC,NM,NR,NW,RS,XO

IV. SUMMARY

The recent patter of tiny details has very likely blurred the big
picture. To review, then, assume that the reader has a problem
reducible to fitting a set of equations of the form (1) or (2) to
measured data. Further assume that this reader--an adventurous spirit--
decides to use FINLIE to solve the problem. Then this invoker of FINLIE
must:

(a) derive the related set of influence equations (Section I1, C
or D);

(b) write a FORTRAN subroutine that lists the original equations
and the related influence equations (Section III, A or B);

(c) write a FORTRAN main program (Section III, D) that will:

(i) furnish adequate initial estimates of the parameters and
initial conditions;

(ii) specify which, if any, of these estimates are to be
adjusted by FINLIE;

(iii) assign weights to the measurements (if the weights are
not all equal);

(iv) call subroutine DUBLIN (Section III, C) in a DO-loop;
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(d) submit the entire program (main, FINLIE and equation-defining
subroutine) to the computer and pouder the ensuing output.

This output will take one of four forms, listed in decreasing

order of desirability:

(1) convergence to the right answer;

(2) failure to converge in the specified number of itera-
tions (sometimes achieving an apparent oscillation about an answer);

(3) divergence (the program crashes);

(4) convergence to the wrong answer.

Result (1) above--convergence to the right answer--should prevail

when all of the following hold:

(a) the measured data are a represeutative sample of the
total behavior they are meant to define. (An elementary violation
would be measurements taken every T seconds on a periodic variable of
period T.)

(b) the measured data are free of gross errors.

(c) "least squares" is a 3uitable fitting criterion. (This
implies that the measurement errors possess certain statistical traits;
however, the degree to which the errors must possess these traits in
order to be considered amenable to least squares is a matter of judg-
ment.)

(d) the fitting equations with their associated parameters
are appropriate for describing the measured events.

(e) the initial paramic estimates are not too far from the
right answer. (What constitutes "too far" varies with the nature of
the fitting equations and the measured data.)

V. ACKNOWLEDGEMENTS

We have already acknowledged our debt to Marquardt, whose
algorithm [see References I to 7 in the Bibliography] has been incor-
porated into FINLIE. This algorithm is applicable whether we are fit-
ting differential equations or algebraic/transcendental equations.
FINLIE is also indebted--especia]ly in fitting differential equations--
to the following sources:

(a) Theodore R. Goodman of Oceanics, Inc., Plainviev, Ne% York,
who first called to our attention (in a private communication ii. 1967)
the feasibility of fit1.ing ordinary differential equations--rather thqn
their pseudo-solutions--to observed data. Goodman's technique [see
References 8 to 11 in the Bibliography] differs from FINLIE's mainly in
the manner in which the influence coefficients are obtained.
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(b) Gar, T. Chapman and Donn D. Kirk of NASA Ames Research Center,
Moffett Fiel-dCailiforni, who developed w-at is now commonly referred
to as the "Chapman-Kirk" technique for fitting the aerodynamic equations
of motion to free-flight data [see References 12 to 16 in the Biblio-
graphy]. Whon applied to differential equations, FINLIE is essentially
a general-purpose Chapman-Kirk prognium with frills.

(c) Robert H. Whyte, of General Electric, Burlington, Vermont,
who for a nt-vbier f67 year was apparently indefatigable in applying the
Chapman-Kirk technique to a variety of problems. References 17 to 31
in the Bibliography are a sa'zipling of Whyte's reports on his labors in
this field.* Many of the handy features of Whyte's programs (for
example, the ability to handle multi-round data and to consider any
parami• value as fixed or adjustable) have found their way into FINLIE
(where they apply to algebraic/transcendental equations as well), It
was through my efforts to adapt one of Whyte's specialized programs to
our needs that I decided that what was needed was a more general-purpose
Chapmaa-Kirk program. Thus, the idea for FINLIE was conceived.
(Unfortunately, the gestation period exceeded that of an elephant.)

* It should be noted that in applying Chapman-Kirk to the 6D equations
of motion, Whyte used an uweighted least squares criterion. Since the
angular and translational residual of the fit are not of equal magni-
tude, Whyte was f"oried to decouple the angular equations from the
translational equations. viiatisfaction lth this enforced and often
unrealistic deaouplinj led Whyte and Hathaway to abandon an unweighted
least squares in favor of a weighted maxinr~m likelihood criterion.Since this criterion was derived on the assumption of a nornal error
distribution, their Maximum Likelihood Method [(ae References 35-39 in
the Bibliography] ahould yield the "same final fit (albeit by a differ-
ence path) as a comparably weighted least squa•res approach.
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LIST OF SYMBOLS
NR

A AEn , an N by N mult--round riatrix.

a-k the (j,kl-th element of matrix A. [j kl,2,...N]

a• ~ajk (ajjakk)½ ajk [nondimensional]
i•a-• jI + X wb-n j•ak; jak when jfk

AN R an N-dimensional multi-round vector.
n-1

b c + 'Y20)- in system (4)

bk the k-th component of '.

Sbk (akk) ½ bk [nondimensional]

C the vector of N3 paraneters.

COND a ROMA input argument vector of N2 single-round initial
conditions.

CR Crn)/E(Pn_) FINLIE's measure of convergence,

c. the j-th paramect. [j=l,2,...N3]S~J

Djk(XmQ) dy (X mQ)/Rqk' the (j,k)-th influence coefficient

evaluated at x , using the current point Q.

[j=l,2,...N2; k=l,2,...N23]

DU a ROME output argument vector, Eq. (74).

EK a DUBLIN output argument vector of crude estimates
Ssk. [k=l,2,...N]

En the n-th round identifier. [n=l,2,...NR]

EPS a DUBLIN output argument: c(P), the value of c at the
point currently stored in argument P.

F a DUBLIN input argument vector of N adjust-or-hold-
fixed flags associated with the N paramics Pk"

FLAG a COMMO.N/NAPLES/ input vector to ROME (and ROMA) containing
the N23 single-round adjust-or-hold-fixed flags
associated with the N23 paramics q..
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LIST OF SXMBOLS (sontinued)

fj yj', system (J)

gj yj, system (2)

h a nondimensional positive constant in the steepest
descent techniqua, Eq. (55).

IC the sct of multi-round initial conditions.

N (NR x N2) + N3, the number of paramics in the system.

NA N2 x N23, the number of influence equations for
system (1).

NB Ni x N23, the number of needed influence equations
for system (2).

NC a DUBLIN I/O argument: originally zero (the "first-
call" flag), it becomes the number of paramics adjusted.

*NF a DUBLIN input argument: I to fit system (1.); 0 to fit
system (2).

NM a DUBLIN input argument vector, where NM(J) is the
number of data points Rm in the j-th round.

NR a DUBLIN input argument: the number of rounds (hence
the number of distinct sets Gf initial conditions to be
determined).

NS a DUBLIN output argument: 0 means "CALL again";
1 means "a disaster has occurred"; 2 means "convergence
by FINLIE's criterion".

NW a DUBLIN input argument: 0 to use the user's weights;
1 to set all weights at unity.

NIdea DUBLIN input argument: the number of measured
dependent variables.

N2 a DUBLIN input argument: the number of dependent
variables in the system.

N3 a DUBLIN input argument: the number of parameters in

the system.

N4 the number of data points Rm for all the rounds.
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LIST OF SYMBOLS (continued)

NS a ROME input argument: the number of equations (N2
differential equations plus NA influence equations) to
be defined in ROME.

N23 N2 + N3, the number of paramics in a single round.

P (a) a set of N multi-round paramics;

(b) a point in the N-dimensional paramiýz space;
(c) a 3U9IN I/0 argument vector containing the N

paranic values.

the vector from the origin to point P in the
N-dimensional paramic space.

P the value of point P that minisiiizes c.

PAR a COMMON/NAPLES/ input vector to ROME (and ROMA)
containing the N3 parameters

Pn the value of point P at the end of the n-th iteration.
[n=0,1,...]

I 'm PnA a candidate for point Pn' obtained by setting X=ýnA

[n=l,2,...]

paramic parameter or initial condition.

Pk the k-th paramic (k=l,2,...N) where the order is:
first-round initial conditions, second-round initial
conditions,.., and finally the N3 parameters.

(akk) Pk' the k-th nondimensional paramic.

Q the single-round equivalent of P.

Q the value of point Q that minimizes y.

qk the k-th single-round paramic, where the order is: the
N2 initial conditions, then the N3 parameters.

R a DUBLIN output argument: the NI by N4 matrix of
residuals, Eq. (83), at the current point P.

RL a DUBLIN I/O argument: initially set at 0.0 to avoid

Marquardt's algorithm; 1.0 to invoke it.

Rm the m-th data point, consisting of xm and the N1

dependent variable measurements Yjm'
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LIST OF SfMBOLS (continued)

RONA an arbitrary name for the user's subroutine defining
system (2).

ROME an arbitrary name for the user's subroutine defining
system (I).

R5 a DUBLIN output argument vector of N1 error measures,
Elq. (84).

round an experiment at which measurements were taken and with
which a distinct set of initial condition values can
be associated.

S the N-dimension.il space in which point P has coordinates

(Pl' P.2' "" PN)'

S the N-dimensional scaled space in which point P has

coordinates (Pl, P2 ' ' N

S 1 the N23-dimensional single-round space in which point
Q has coordinates (qlq 2 ,... qN23)

SIG a DUBLIN output argument: the value of s at tne
current point P.

s estimated standard deviation of the fit, Eq. (69).

s the crude estimated standard deviation in paramic Pk'
Eqs. (70-71).

U a ROME input argument vector, Eq. (73); a ROMA output

argument vector.

u exp[cI(x-x0)] in system (4).

W a DUBLIN I/C argument: the N1 by N4 matrix of weights
WJ In"

Wjm the non-negative weighting factor associated with yjm"

X a DUBLIN input argument vector of the N4 values xm.

XE a ROME and ROMA input argument, the value of x.
XO a DUBLIN &nd ROMA input argument: xO.

x the independent variable of the system
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LIST OF SYMBOLS (continued)

X the m-th value of x at which measurements were taken.m

x 0 the value of the independent variable at which all
initial conditions apply.

Y (a) a vector of N2 dependent variables;
(b) a DUBLIN input argument: the Nl by N4 matrix of

dependent variable measur.ements Yjm"

YC e DUBLIN outrut argument: the N2 by N4 matrix of
computed dependent variable values yj(xmP).

Y0  a vector of N2 single-round initial conditions.

y the j-th dependent variable. [j=l,2,...N2]

Yjm the measured value of yj at xm

[j=l,2,...Nl; m=l,2,...N4]

yj (X MP) the calculated value of yj at xm, using the current

point P.

a(Q) the N23 by N23 single-round matrix at point Q

a En the N by N expansion of the matrix a associated with round
En.

Cskn(Q) the (k,n)-th element of a(Q), Eqs. (36-38).

](Q) a vector point function of Q: the vector in space S1
in the direction of the negative gradient of y at
point Q.

the N-dimensional expansion of the vector associated
V 1with round En.

the k-th component of •. [k=l,2,...N23]

1P• the increment vector in S from point P to the nearbyS•npoint P n+]".

AQ the increment vector in S1 from point Qn to the nearbyn point Qner

-Y(Q) the single-round equivalent of c(P), Eq. (14).
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LIST OF SYMBOLS (continued)

(P;) the nondimensional sum of the weighted squares of the
residuals, Eq. (7); the value of the scalar point
function e at point P.

x a nonnegative constant added to each diagonal element
of the scaled form of matrix A and adjusted by
Marquardt's algorithm so that c(P n+) < E(P n).

xnA* xnB two consecutive trial values assigned to X in an effort
to move from point Pn' where XnB lOXnA*

Superscripts

(÷) a row vector

(,)T the transpose of a row vector: that is, a column vector

( ) the scaled (hence nondimensional) form of ().

( )' d( )/dx

Subscripts

I Id denotes the dimensions of [ ]

( )S the components of ( ) are in space S

( ); the components of C) are in spaces

( )Sl the components of ( ) are in space S .
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APPENDIX
C

C ***e FINLIE **** FNLE 1
C FNLE 2

SUBROUTINE DUBLIN tROMENFNtN2,N3,N7oNSNRNMoXOtXYtFoNWoW, FNLE 3
1 P9RLoNCvYC9RoRSvEPS9SI6,EKvNS) FNLE

C FNLE 5
C 00, 0*** ** *e *. • 0 *****0*0*0 *,** FNLE 6
C * FNLE 7
C * INPUT ARGUMENTS ,, * FNLE H
C * ROME a THE DUMMY NAME OF THE SUBROUTINE (WRITTEN BY THE * FNLE 9
C • USER) THAT DEFINES EITHER * FNLE 10
C * (A) THE DEPENDENT VARIABLES (NF w 0) * FNLE 1i
C 0 OR (9) THE DERIVATIVES OF THE DEPENDENT VARIABLES * FNLE 14
C * (NF oNE, 0) * FNLE 1-
C * NF a THE FLAG THAT INDICATES THE NATURE OF SUBROUTINE * FNLE 14
C * ROME ISEE PREVIOUS ARGUMENT) * FNLE 15
C * NI a NUMBER OF MEASURED DEPENDENT VARIABLES * FNLE 16
C 0 (1 oLE, Ni eLE. 10) * FNLE 17
C • N2 w TOTAL NUMBER OF DEPENDENT VARIABLES * FNLE 18
c (NI LE, N2 LE* 20) * FNLE 19

C * N3 m THE MAXIMUM NUMBER OF PARAMETERS (NOT COUNTING * FNLE 20
C * INITIAL CONDITIONS) WHOSE VALUES CAN BE DETERMINED * FNLE 21
C * FROM THE USER'S SUBROUTINE ROME (0 *LE* N3 ,LE, 40) * rNLE 2?
C * N7 a THE NUMBER OF ROWS IN ARRAYS YW AND R BELOW. AS * FNLE ?3
C * DIMENSIONED IN THE CALLING PROGRAM (N? GEo NI) * FNLE 24
C * N8 a THE NUMBER OF ROWS IN ARRAY YC BELOW, AS * FNLE 25
C * DIMENSIONED IN THE CALLING PROGRAM (N8 ,GE9 N2) * FNLE 26
c * NR a THE NUMBER OF ROUNDS (INDIVIDUAL CASES) TO BE REDUCED* FNLE 27
C SIMULTANEOUSLY ( I .LE9 NR *LE. (60 - N3)/N2 ) * FNLE 2P
C * NM m A VECTOR OF NR ELEMENTS, WHERE * FNLE 29
C * NM(J) * THE NUMBER OF INDEPENDENT VARIABLE VALUES AT * FNLE 30
C 0 WHICH MEASUREMENTS WERE TAKEN FOR THE J-TH * FNLE 31
C 0 ROUND FNLE 32
C * NOTE *,, WE DEFINE * FNLE 33
C * N4 a NM(1) + NM(2) * *DO * NM(NR) • FNLE 34

C 0 = THE TOTAL NUMBER OF INDEPENDENT VARIABLE * FNLE 35
C 0 VALUES FOR ALL THE ROUNDS * FNLE 36
C N NR*N2 + N3 * FNLE 37
C * a THE NO. OF ELEMENTS IN P BELOW * FNLE 38
C NMAX a THE MAXIMUM ELEMENT OF ARRAY NM FNLE 39
C * THEN WE MUST HAVE FNLE 40
C • N @LT* N4 oLEv 1000 " FNLE A1
C 0 NI•NMAX -LE. 200 • FNLE 42
C 0 N2*NMAX *LE. 400 • FNLE 43
C 0 XO u THE REFERENCE INDEPENDENT VARIABLE VALUE AT WHICH * FNLE 44
C * ALL INITIAL CONDITIONS APPLY, NOTE oe. INPUTS XO * FNLE 45
C * NI9N2 AND N3 ARE ASSUMED TO HAVE THE SAME VALUE FOR * FNLE 46
C 0 EACH ROUND. * FNLE 47
C * X u A VECTOR UF THE NA INDEPENDENT VARIABLE VALUES AT * FNLE 48
C • WHICH MEASUREMENTS WERE TAKENt WHERE * FNLE 49
C X(1)9 ,.......,&X(NM(1)) FOR THE FIRST ROUND * FNLE 50
C • X(NM(11)#I)o ...oX(NM(I)+NM(2)) FOR THE SECOND ROUND • FNLE 51
C 0 ETC. * FNLE 52
C * Y a THE NI RY N4 MATRIX OF MEASURED DEPENDENT VARIABLE * FNLE 53
C * VALIJES, WHERE * WNLE 54
C * Y(IJ) u THE MEASURED VALUE OF THE I-TH DEPENDENT * PNLE 55
C * VARIABLE AT X(J) * FNLE 56
C • F * THE VECTOR OF N FLAGS FOR ARGUMENT P BELOW, WHERE * FNLE 57
C • F(J) a 0.0 IF THE VALUE OF P(J) IS FIXED * FNLE 58
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C r•i(J) a 1.0 IF THE CURRENT VALUE OK P(J) IS TO BE * FNLE 99
C ADJUSTED BY THE FITTING PROCESS * FNL.E 60
C * NW a THE WEIGHT FLAG ASSOCIATED WITH W BELOW, WHERE * FNLE 6!
C NW a 0 IF THE USERIS WEIGHTS IN ARGUMENT W ARE TO * FNLE 6?
CBE USED * FNLE 63
C o NW a I IF ALL WFIGHTS ARE UNITY* IN THIS EVENT. THE * F4LE 64
C *THE FIRST TIME THIS SUBROUTINE IS CALLED9 ALL 0 FNLE 65
C ELEMENTS OF MATRIX W ARE SET TO 1%0. (HENCE, * FNLE 66
C THE USER NEED NOT ESTABLISH W WHEN ALL ITS * FNLE 67
C ELEMENTS ARE 190.) * FNLE S
C W a THE N1 BY N4 MATRIX OF WEIGHTS ASSOCIATED WITH INPUT * FNLE 69
C Y ABOVE. SEE ARGUMENT NW ABOVE. * FNLE 70
C * INPUT/OUTPUT ARGUMENTS ... * FNLE 71

P a TNE CURRE0T POINT AT WHICH OTHER ARGUMENTS ARE * FNLE 72
C EVALUATEDo WHERE * FNLE 73
C P(1l9*o,.oeoeo.,*oP(N2. a I9C, FOR FIRST ROUND * FNLE 74
C * P(N2+1)qev.,eo.ooP(2*N2) a IoC, FOR SECOND ROUND e FNLE 75
c * o0.. * FNLE 76
c e P(NReN2-N2•I),o..P(NR*N2) a I.Co FOR LAST ROUND * FNLE 77
C * P(NR*Na-I1¼......P(N) a PARAMETERS * FNLE 7R
C * RL • A MARQUAF0T •rUMENT. BEFORE DUBLIN IS CALLED THE * FNLE 79
C * FIRST TIME* * FNLE HO
C * SET RL a 0.0 IF THE MARQUARDT ALGORITHM IS TO BE * FNLE Al
C * OP.ITTED. THEREAFTER. RL WILL REMAIN * FNLE R?
C • AT 0.0. * FNLE 83
C • SET RL a 1.0 IF THE MARQUARDT ALGORITHM IS TO BE * FNLE 84
C * USED. THEREAFTER* RL UPON RETURN WILL * FNLE PS
c * RE MARQUAROT'S LAMBDA. (HENCE. USE A * FNLE Hh
C * NAME, NOT 1.0. IN THE CALL LIST.) * FNLE 87
C * NC a THE #FIRST CALL' rLAGO, BEFORE THIS SUBROUTINE IS * FVLE AP
C CALLED FOR THE FIRST TIME. NC MUST 9E SET TO 0. * FNLE 89
C * THIS SUBROUTINE THEN ESTABLISHES NC AS THE ACTUAL * FNLE 90
C * NUMBER OF INITIAL CONDITIONS AND PARAMETERS BEING * FNLE 91
C * DETERMINED (1 ,LE. NC .LE. N) * FNLE 92
C OUTPUT ARGUMENTS -. , 4 FNLE 93
C • YC a THE N2 BY N4 MATRIX OF COMPUTED DEPENDENT VARIABLE * FNLE 94
c * VALUES AT THE POINT CONCURRENTLY STORED IN ARRAY P, * FNLE 05
C 0 WHERE YC(J.K) a COMPUTED VALUE OF THE J-TH DEPENDENT * FNLE 96
C * VARIABLE AT X(K) * FNLE 97
C * R a THE NI BY N4 MATRIX OF RESIDUALS, WHERE * PNLE 99
C * R(IJ) = YiIJ) - YC(IoJ) * FNLE 99
C * RS a THE VECTOk OF Ni ERROR MEASURES, WHERE * FNLE 100
C * Rs(T) = wEIGHTED SUM OF THE SQUARES OF THE * FNLE 101
C * RESIDUALS IN THE I-TH MEASJRED DEPENDENT * F4LE lo?
c * VARIABLE * FNLE 103
C * EPS s THE ERROR MEASURE OF THE FIT AT THE POINT * FNLE 104
C * CONCURRENTLY STORED IN ARRAY P. EPS IS THE WEIGHTED * FNLE 105
C * SUM OF THE SQUARES OF THE RESIDUALS OVER ALL THE * F•..E 106
C • POINTS, OVER ALL THE MEASURED DEPENDENT VARIABLES * F'-'LE 107
C * AND OVER ALL THE ROUNDS. * FNLE !06
C * SIG a THE ESTIMATED STANOARD DEVIATION OF THE FIT * FNLE 109
C * EK u THE VECTOR OF CRUDELY ESTIMATED STANDARD DEVIATIONS * FNLF 110
C * IN THE ELEMENTS OF POINT Po * tNLE 1II
C * NS a OUTPUT FLAG, WHERE * FiLE 112
C * NS a 0 IF THE PROCESS HAS NOT YET CONVERGED BY * FNLE 113
' * THE CRITERION BUILT INTO SUBROUTINE DUBLIN * FNLE 114

a * 1 IF ALL OUTPUT ARGUMFNTS ARE INVALID (PROPABLY * FNLE 115
c * BECAUSE SOME INPUT ARGUMENTS ARE TOO LARGE * rlE 11b
c * FOR CERTAIN DIMENSIONED ARRAVS). THE CALLING * FNLE 117
c * PROGRAM SHOULD TAKE SPECIAL ACTION (E.G.9 * FNLE l1P
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C * STOP) IN THIS EVENT. * FNLE 119
C * 2 IF THE PROCESS HAS SATISFIED THE BUILT-IN * FNLE 120
C * CONVERGENCE CRITERION ' FNLE 121
C * * FYLE 122
c .* * * * * * * * * * * * FNLE 123
C FNLE 124

DIMENSION NM(j),X(1) Y(NT71) F(1),H(Nol),P(I)oYC:NB,1)JR(NT.1), FNLE 125
1 RS(1)oEK(1) rNLE 126

DIMENSION ALFA(3600)oALF(60,60),GAMMA(60,60)vBATA(60)gS(60), F'LE 127
1 PA(6O)9PB(6O),PC(60),ALPHA(60,6O),BETA(60) FNLE 12A

EXTERNAL ROME FNLE 129
C FNLE 130
C ** PART 1. PRELIMINARIES FNLE 131
r FNLE 13?

Ml = N! FNLE 133
M2 a N2 FNI.E 134

M3 , N3 FNLE 135
M7 a NT FN•LF 136
M8 x N8 FNLE 137
MC - NC F,4E 13P
MR z NR FNLE 139
QL = RL rNLE 140
EA = EPS FNLE 141
IF (MC oGTo 0) GOTO 40 FNLE 14?

C FNLE 143
C THE FIRST TIME DUBLIN IS CALLED (INPUT NC - 0), FNLE 144
C SET ALL WEIGHTS TO l10 IF NW a 1, THEN EVALUATE FNL- 145
C ALPHA, BETA, YC9 Rs RSt EPS AND Si1 AT INPUT FNLE 146
C POINT Pa OUTPUT NC IS THE NUMBER OF PARAMETERS AND FNLE 147
C I,C, TO BE DETERMINED. IF THE MARQUAROT ALGOR7 LTHM FNLE 146
C IS TO BE USED, SET RL O .01. RETURN. FNLE 149
C FNLE 150

M4 = 0 FNLE 152
DO c J a 19MR FNLE 153

M4 = •4 + NM(J) FNLE 154
S CONTINUE FNLE 155

IF (NW .NE. 1) GOTO 30 FNLE 151

DO 20 J a 1,M4 FNLE 156
DO 10 1 a lMI FNLE 157

W(ItJ) • 100 FNLE 158
i0 CONTINUF FNLE 159
20 CJNTINUE F'%LE 160
30 CALL LONDON (ROMENFMl1M2,M3,M7M•MB6OoMRNMoXOoXoYoWFoP, FNLE 161

1 EAHMCALPHA#RETAYC#R.RSNS) aNLE 16?
EPS = FA FPJLE )63

EM = M4 - 4C FALE 1h4
IF (EM .vT. 0.) SIG 2 SQRT(EPS/EM) FNLE 169
IF (EM .LE. 0.) SI • 0. FNLL 166
NC = MC FNLE 167
IF (QL .NE. 0.) RL o 0.01 FNLE 168
RETURN FNLE lb9

c :NLE 170
C *•* PART 2. ON SUBSEQUENT DUALIN CALLS* DECREASE THE INPUT RL. FNLE 171
L SHRINK INPUT ALPHA, RETA AND P TO ALFv. BATA AND PA rNLE IT?
C BY ELIMINATING ALL 'FIXED' (F(K)aO.O) COMPONENTS. FNLE 17ý

40 CONTINUE FNLE 1`0
IF (OL .GT. 0.5E-16) UL * O.IQL FNLE 175

LD x MR*M? + 43 FNLE 176

JA c 0 FNLE 177

jA a 0 rNL.E 17A
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DO 60 J u hLn FNLE 179

IF (F(J) .EQ. 0.) ,OTO 60 FNLE IHO
DO 50 K a 1,L.D FLE 181

IF (F(K) *EQ* J,) GOTO 50 FNLE 1A2
3 ,JR * 1 FNLE I3

*LFA(JB) w ALPHAKJ) FNLE JP4

0 CONTINUE FLE ]4H

JAuJA aNuE I+I
.ATA(JA) v RETA(J) PNLE 147
PA(JA) a P(J) FNLE 18P

6r CONTINUE F'JLE 18Q
JB a 0 FNLE 19O
DO 80 J a 19MC FNLF 191

DO 70 K 1 9,MC FNLE 19';
JR = +*. 1 FNL E 113

ALF.KJ) = ALFA(JB) FNLF ]q4
70 CONTINUE FNLE 19")
60 CONTINUE FNLE 196

FNLE IQ7

C FORM SCALE FACTORS S(J). FNLE lIy
C REPLACE BATA WITH SCALED HATA. 7NLF lQv
C FORM SCALED ALF(JoK) AND STORE A8OVE THE PRINCIPAL FNLE ?00

C DIAGONAL AS ALF(KtJ), PN.E 01
C FORM rM = THE SQUARE OF T4E MAGNITUDE OF THE FNLE PO?

C SCALED BATA VECTORý FNLE ?03

C FNLE P0'
RM 0, rNLE ?nr)

DO 100 J = 1MC FNLE 20o
S(J) x I,/SQRT(ALF(JJ)) WNLE P07

RATA(J) s S(J)*BATA(J) rNLE 20H

BR = SM B RATA(J)**2 FNLE 20q
K x J - I PNLE ?10

90 I1- (0, ,EQ. 0) 3OTO 100 rNLE ?11

AL.F(KJ) r S(J)*S(K)*ALF(JK) FNLE P?1
SKK - FlNE ?13

GOTO q6 FNLE ?14

100 CONTINUE FNLE :'l
C FNLE ?P
C *4* PART 3, FORM MATRIX GAMMA HASED ON THE CURRENT VALUE OF PNLF P17

C MARQUARDT'S LAMBOA. FNLE 21H
110 CONTINUE FNLE ?l1

DIAG = 1. + OL PNLE (?f
DO 130 J = 1,MC FNLE ??I

GAMMMfJJ) = OIAG FNLF 2??
K x J -. I rNLF '?3

120 IF (K ,EQ. 0) GOTO 130 rNLF ??4

GAMMA(JK) ALF(KJ) FNLF P?2
GAMMA(KJ) ALF(KJ) FNLF ?2t
K a K - ??NLF r7
GoTo 120 FRNJLF ??h

130 CONTINUE FNLE ??Q
C F* NL F '"l

C REPLACE GAMMA 9Y ITS INVEPSE. FNLE 2?3
C rNLF ?3?

CALL MATINV (GAP4MAMCPR,600,0OT) rNLE 233
C FNLF P14
C Fr'RM THE COMPuNENTS OP OF THE SCALED OELTA P VECTOR. FNLF ;3',

C FONm THE 4Ew POINT PC. N 3t 2
t,

C FORH DoT = THE DOT oRjUowT OF THE SCA•.E') RATA AND rNLE 2?7
c THE SCALED DELTA P VECTORS. WNLE ?38



C FORM OPM a THE SQUARE OF TAE HOA3NITUDE OF THE FNLE ?39
C SCALED DELTA P VECTORo FNLE ?40
C FORM TR = THE SaUARE OF THE COSINE OF THE *NGI.E FNLE 241

C RETWEEN BATA ANn DELTA P, FNLE ?42

C FNLE ?43

DOT a 0. FNLE 244
OPM a 0. FNLE 245
DO 150 J a 1,MC FLE 246

DP a 0. FNLE 247
DO 140 K u 1,MC FNLE 249

DP a DP # RATA(K)*GAMMA(JtK) rNLE 249
140 CONTINUE FNLE 250

PC(J) a PA(J) + DP*S(J) FNLE ?51

DOT a DOT * DP*BATA(U) FNLE ?52
DPM = DPM * DP*DP FNLE 253

150 CONTINUE FNLE 254
TR a DOT**2/(DPM*BM) FNLE 255

C FNLE 256
C EXPAND PC TO FULL SIZE AS PB, THE CANDIDATE FNLE 257

C REPLACEMENT FOR INPUT POINT P. FNLE ?5S
C INLE 259

K = 1 FNLE 260
DO 170 J z 1LD FNLE 2(1

IF (F(J) ,EQs 0.) GOTO 160 FNLE ?62

PR(J) x PC(K) FNLE 263

K z K + I FNLE 264
GOTO 170 FNLE 2b5

160 PR(J) a P(J) FNLE ?h6
170 CONTINUE FNLE 267

C FNLE 268
C ** PART 4. FOR THE CANDIDATE POINT P, OBTAIN THE ERROR MFASURE FNLE 2h9
C ER (AND ASSOCIATED ARRAYt YC, R, RS, ALPHA AND BETA).FNLE 270
C FNLE 271

180 CONTINUF rNLE 27?
CALL LONDON (ROMENFM ,M2,M3,M7tM8960,MRNMXOXYWF 9 PR, FNLE ?73

] ERMDALPHARFTAYCRRSNS) PNLE ?74

IF (NS .EO, 1) RETURN FNLE 275

C FNLE 276
C COMPARE NEW ERROR ER AT POINT PR WITH INPUT ERROR EA FNLE 277
C AT POINT P, IF EB IS NO LARGER (OR IF THE MARQUARDT FNLE 278
C ALGORITHM IS NOT BEING USED) PROCEED TO PART 5, FNLE 279

FNLE 280

IF (ER ,LE* EA) GOTO 210 VNLE ?H1

IF (QL .EQ. 0,) GOTO 21G FNLE 282
C UFNL 283
C IF THE ANGLE HETWEEN BATA AND OELTA P IS LESS THAN FNLE ?84
C 45 DEGREES, OBTAIN A NEW POINT PR BY DECREASING THE FNLE ?25

C LENGTH OF DELTA P AND GO RACK TO PART 4, FNLE 286
c FNLE 267

IF (TR .GF. S) GOTO 200 VNLE 2?8
n0 190 J * i,Ln FNLE ?8(4

PR(J) z P(J) * 0,*(PRCJ)-P(J)) FNLE 290
190 CONTINUE FNLE P91

GOTO I1O FNLE POP
C FNLE 293
C INCREASE MARQUARDT'S LA4RDA AND GO BACK TO PART 3* rULE 294
C FNLE qS

200 CONTINUE PNLF ?96
OL a 10.*OL FL E P97
6OTO 110 PNI.E 2q

NLt.



C FNLE 299
C ' PART S, THE MARQUARDT ITERATIVE PROCESS HAS BEEN COMPLETED FNLE 300
C SATISFACTORILY, UPOATE ERROR MEASURES EPS AND SIG. FNLE 301
C TEST FOR CONVERGENCE. UPDATE POINT P AND COMPUTE FNLE 302
C ERROR ESTIMATES EK, FNLE 303

210 CONTINUE FNLE 304
RL a QL FNLE 305
EPS a EB FNLE 306
SIG a SQRT(EB/EM) FNLE 307
CR a u O - EB/EA FNLE 309
IF (CR ,GE, 0. *AND* CR *LT, 0,000010) NS * 2 FNLE 309
K a I FNLE 310
DO 220 J a 19LD FNLE 311

P(J) a PB(J) FNLE 312
IF (F(J) .EQ. 00) GOTO 215 FNLE 313

EK(J) a SIG*S(K)*SQRT(GAMMA(KvK)*DIAG) FNLE 314
K m K + I FNLE 315
GOTO 220 FNLE 316

219 EK(J) a 0. FNLE 317
220 CONTINUE FNLE 318

RETURN FNLE 319
ENt) FNLE 320

c FLE 321
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 32?

C FNLE 323
SUBROUTINE LONDON (ROMEoNAN1,N2,N3,NT7N8,NL.NRNMXAoXoYWFPt FNLE. 324

I EPS9NC9ALPHA9BETAsYCoR9RSvIS) FNLE 3?5
C *FNLE 326
C FNLE 327
C * * FNLE 328
Z * FOP A GIVEN SET OF PARAMETER AND IC. VALUES AND A GIVEN * FNLE 329
c * MULTI-ROUND SET OF MEASUREMENTS# THIS SUBROUTINE PRODUCES * FNLE 330
C * THE ERROR REASURE E-Sp THE COMPUTED DEPENDENT VARIABLE * FNLL 331
C 0 VALUES, THE RLSIuUALS AND THE ALPHA AND iETA ARRAYS FOR THE * FNLE 13?
c * MULTI-ROUND OATA, AL,. ARGUMENTS ARE DEFINED IN THE COMMENTS * FNLE 333
C WITHIN SUBROUTINE DUBLIN, * FNLE 314
C * * F4LE 335

0" * * * * 0* * 00 * * * 0 ** * 0 * * 000 * FNLE 336
C FNLE 337

DIMENSION NM(1)oP(1)tF(I),X(1) Y(NTt1)oW{(NT,)o FNLE 338
I YC(Nol),R(N7,1) ,RS(1)oALPHA(NL!fl *BETA(1) FNLE 339

DIMENSION RSQ(1O) FNLE 340
C * THE ABOVE DIMENSION ASSUMES THAT NI .LE, 10 FNLE 341

DIMFNSION C(20),CF(20) FNLE 34?
C * THE ABOVE DIMENSIONS ASSUME THAT N2 *LE, 20 rNLE 13

DIMENSION CP(40),FP(40) FN"E 344
c * THE ABOVE DIMENSIONS ASSUME THAT N3 ,LEo 40 rNLE 34S

DITFNSION ALFA(3600),BATA(60) FNLE 346
C * THF ABOVE DIMENSIONS ASSUME THAT 42 * N3 ,LE. 60 FNLE 347

DIMENSION RE(200)qWR(200),YM(200) FNLE 34P
C * THE ABOVE DIMENS!ONS ASSUME THAT N1*(MAX, ELEMENT OF NM) ,LE. 200 FNLE 349

DIMENSION YCOMP(400) FNLE 350
C * THE ABOVE DIMENSION ASSUMES THAT N2*(MAX, ELEMENT OF NM) ,LE. 400 FNLE 351

DIMENSION WXX1000) FNLE 3r?
* THE AROVE rDIMENSION ASSUMES THAT FNLE 353

CNM(1) + NM(2) + . NM(NR) .LE. 1000 FNLE 354
EXTERNAL ROM4 FNLE 3•S

C PNLE 356
C PART 1. ** PRElLIMINARIES FNLE 357
C FNLE 35A
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IS c 0 F~N LE 3 59
MR x NR FNLE 360)
Ml a Ni FNLE 3h1
M23 a N2 FkJj,F '162
M32 a N3 F~NLE ?6b3
M423 * 42 M43 FN.LE :364
M46 z M2*MR FNLE 365
LC n 1 + M6 FNL.E 366
LD M43 +M k 6

JX a 1-C1.M23)*(LC-M2) FNLE 367
D0 220 N a 19LD F4LtE 369

ALPHA(NN) u 0. FNLE 370
RETAIN) a 0. FNLE 371
IF (N .EQ. LD) GOTo 220o FNLE 37?
A4A = N + 1 FNLE 373
DO 210 K a MA9LO FNL.E 374

ALPHA(KoN) 0. FNLE 375
ALPHA(NK) a0. FNLE 376

210 CONTINUE FNLE 377
220 CONTINUE FNLE 378

DO 210 I x 1,PM1 IrNL 3714
RS(1) z 0. FNLE 380

230 CONTINUE FNLE 381
MC = 0 FNLE 38?
DO 240 K = 19M3 FNILE 38-3

KA = K + M46 FNLE 3A4
CP(K) u P(KA) FNLE 385
FPCK) = F(KA) FNLE 3ý4
IF (FP(K) .NE, 0.) MC MC *1 VNLE 3847

24C CONTINUE FNLE 388
JA = 0 FNLE 9
J8 = 0 FNLE '190
EP = 0. FNLE :391

C FNLE '29?
C .. PART 2. *** THE DO-LOOP FOR HANOLING MLILTIPLk ROUNDJS PNLE 393
C FNL 394

00 370 JR = 1,MR F NLE, 395
M4 = NM4(JR) rNLF 396
DO 260 M4 a 19H4 FNLE 397

IA = CM-1)*M1 FNLE 3Q'A
JA =JA +1 FNLE 394
xx('4) 2 X(JA) ýNLE 400
DO 250 1 a 19MI FNLE 401

IM a IA + 1 FNLE 40?
YM(IM) a YIoJA) FNJLE 403
WR(IM) a' W(IJA) ýNLE 404

250 CONTINUE C4LF 40',
26) CON T INUE FNLE 406

LA z (jR-1)*M2 F,,4L L4Et.V1
00 270 K z 1,M2 FNLE '40A

LA = LA + I FNLE 409
CC~() a P(LA) FNLF 410
CF(K) a F(LA) ;74L F 411
IF (CF(K) .NE. 0.) MC a ~4C + 1 FNLr 41?

270 CONTINOE FNLE 413
CALL PARIS ('POMENA, 1,M1,,P423,'44,CCFCF¼FPWRXAXYM, VNLE 414
1YCOMPqPERSQlALFABATA, IR) RNLF 41ý
IF (dR ,FQ. 0) COTO 2A0 PNLE 416

TS -1 FNLF 41I?
PRTNT 275 NE41ý



2,1 ~ FnROT(II 10A0UNSUCCESSFUL RETURN FROM1 SUBROUTINE PARIS.FNLE 419
1'/IH 91OX91ALL SURROUTINE DUBLIN OUTPUTS INVALID.') FNLE 420

RE7,URN FNLE 421
210 CONTINUE FNLF 4?2

Do 210 1 1941 FL 2
aS RS(I) + RSQtI) F~NLE 423

EPýEP ý' RSQ(1) FNLE 4?5290 CONTINUE FNE 2
DO 310 M a 19M4 FNLE 4?7

NI a (4, 1) *M1 lE'?
NJ a (M-1)*M2 PNLE 429
Ja a Ja I FN14LL 430
00 300 J - 1"'2 FVLE 431

'A- NI + J FNLE 43?
JM a NJ + J FNLE 433
YC(JJ.B) m YCOMPt-A) FNLE 434
IF (J *LE# MI) R(ijqJ) aRE(Im) FNLE 435L300 CONTINUE FVLE 436

310 CONTINUE FNLE 437
LA a I + (dIR-j)*MZ FNLE 43R
LB a LA + M42 IF4LE 439
.1J 4 F!L.E 440
JJ a 1 FNLE 441
DO 340 N -LAvLB FNLE 44?

K N FNLE 44.3Ja J K --LA FNLE 444
320 ALPHA(N,K) a ALFA(J) FNLE 445s

IF (K *GT, N) ALP*4A(KvN) *ALFA(J) FNLE 446
J x i+ 1 NLE 447K K +1 F'.LE 448

IF (K .LEs LB) GOTO 320 F4LE 449
K( LC FNLE 4S0

330 ALPH"A(NoK) a ALFA(J) FNLET 451
A(.PHA(KgN) a AL.FA(J) FNLE 452
J*J i+I FNLE 453
K aK * FNLE 4r,
IF (K .LEs LI)) GOTO 330 FNLE 455
BETA(N) vBATA(iJ) FNLE 4S6
Jj w JJ * 1 FNLE 457340 CONTINUE FNLE 4SR

JJ z I + HI? FNLE 459~
0O 360 N v '-C,LD FNLE 460K mN FNLE 461

J z JX *(1 * M23)*N FNLE 462
350 ALPH4A(N#K) a AkLPHACNtK) + ALFA(J) FNLE 463

IF (K. cT. N -ANO. JR .EQ. MIR) ALPH1A(K,N) aALPHA(N*K) FNLE 46
j j, F'4LE 465K K, FNLE 46b
IF (K .LE. LD) GOTO 350 FNLE 467
RETA(N) = ETAIN) * BATA(JJ) FWN.- 46H
JJ a JJ F ki FLE 4S~9360 CONT 'NLJr FNLE 470

370 CONTINUE 
FNLF 471FPS -EP 
FNLE 47?

NC MC FLF 473RETORN 
FY-E 474LN 
FNLE 4 7c

c 
FNJL F 4 7 O

C F NLF47
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SUBROUTINE PARIS(ROMEvNANBN1oN2,N23,N49CCFrP.ý,F'WXAX. YM, FNLE 47-

1 YC9RRSQtALFA9BATAsIR) F4LE 40

C FNLE 4R]

C . , . .**e** • *.* ,o*0 * ** *e* *** FNLE 4H?

C * • PNLE 491
C * FOR A GIVEN 5'T OF PARAMETER AND IC ESTIMATES AND THL GIVEN * F 14LE 4Hu

C * MEASUREMENTS FOR A SINGLE ROUND0 THIS SUBROUTINE PRODUCES * FNLE 49M

C * THE COMPUTED DEPENDENT VARIABLE VALUES9 THE RESIOUALS AND * F'NLE 4PP

C * IF NB .NE. 0) THE ALPHA AND BETA ARRAYS FOR THE GIVEN ROUND.* FNLE 47

C * * FNLE 4MA

C * INPUT ARGUMENTS see * FNLE 4

C * ROME * THE DUMMY NAME OF TI"E SUBROUTINE (WRITTEN BY THE * FNLE 490

C USER) THAT DEFINES EITHER * P\LE 491

C * (A) THE DEPENDENT VARIABLES (NA u 0) * FNLE 49?

C * OR (B) THE DERIVATIVES Or T4E DEPENDENT VARIABLES * FNLE 4q3

C * (NA .NE, 0) * FN;-E 4q4

C * NA * THE FLAG THAT INDICATES THE NATUkE OF SUBROUTINE * rNLE 4

C * ROME (SEE PREVIOUS ARGUMENT) - FNLE 44

C * NB v 0 IF ARGUMENTS ALFA AND BATA BELOW ARE NOT TO BE * IrUF 'Q7

C * COMPUTED * FNLF 4ý

C *a I IF ALFA AND BATA ARE TO ME COMPUTED * FNLE 4-4

C * NI a NUMPER OF MEASURED DEPENDE4T VARIABLES (NI.GE.1) * FNLF rO)0

C * N? a TOTAL NUMBER OF DEPENDENT VARIARLES (N2.GEN1) * FNLE ct'l

C * N23 w TOTAL NUMBER OF PARAMETERS AND INITIAL CONDITIONS * FNLE zo?

C (N23.GE*N2) * FNLE )?

C • N4 a NUJMBEk OF MEASUREMENTS TAKEN ON EACH OF THE NI * FNLE "c"

C * MEASURED VARIABLES * FNLE c()-

C C w VECTOR OF THE N2 INITIAL CDNnITION ESTIMATES * FNLF VrI
C * CF u VECTOP OF THE N2 INITIAL CONDITIuN FLAGS * FNE •7

C * (0. IF THE INITIAL CONDITION VALJE IS FIXED) 0 FN.E '

C P a VECTOR OF THE N3 PARAMETER VALUES * rqLF 5r.

C PF a VECTOR OF THE N3 PARAMETER FLAGS * FNLJ rIn

C * (0. IF THE PARAMETER VALUE IS FIXED) * FNLr C;ll

C * W a VECTOR OF THE Ni BY N4 WEIGHTS ASSOCIATED WITH INPUT * rNLF 1,;

C • YM DEFINED BELOW * FNLIj 11i

C • XA a THE REFERENCE X VALUE AT WHICH INITIAL CONDITIONS * FNLE L14

C * APPLY * FN ;jy

C * X a VECTOR OF THE N4 VALUES OF THE INDEPENDENT VARIABLE • FbýLF z1']

C * AT WHICH MEASUREMENTS WERE TAKEN * rsL 7

C * ya u VECTOR OF THE Ni BY N4 MEASURED Y VALUES FOR ONE * FNLj jF

C * ROUND. WHERE F rNJ =Z

C YM(IM) • MEASURED VALUE OF Y(I) AT X(M) • NL* '

C * IM m I * (k-1)*Nl F C' c,, '
C. I • 192v ... N1 * F'4_ -F

C •M . 1,2, f .. NA • r-4E ";-

C * 0 FNL F-.

C * OUTPUT ARGUMENTS F • L.E L

C • YC *VFCTOR OF N2 9Y N4 COmPUTEO Y VALJES FOR ONE ROUND, • FNLE Z

C * WHFRF F FN•E -_'E

C * YC(JM) a COMPUTED VALUE OF Y(J) AT {mA) • FNLE

C •JM N J * (4-1)*N2 F -N4Y ".

C * 192 ... N? F' NE 3

C R P * VECTOR OF NJ BY NA RESIOU&LS. WHERE * FNLF •

c * R(IM) a YN(IM) - Yc(Imý,)q 0 FNL rs '

• IM2 a I + (•M1)EN2 * FULE z

C PSQ )VFCT04 OF Ni ERROR MEASURES. WHERE * TNLE Sýi.

C * R5Nt) wLIG:,TED SUM OF THF SQUARES OF THE RESIDUALS* r'4pi

C !N TLE I-TV DEPENDENT VARIABLE * VNL'E n

c * ALFA aVFCT04 OF N23 BY N23 ALPHA VALUES# W~iRE * FNLF -;ý

C * AjFA(Nn) x ALPHA(N,K) * rNLE ;'i



C * NK u N * ýK-1)*N23 * FNLE ý39
C * BATh a VECTOR OF N23 BETA VALUES * FNLE 540
C * IR a I IF A WARNING WAS PRINTED AND A RETURN EXECUTED * FNLE S41
c * BEFORE OBTAINING THE ABOVE OUTPUT * FNLE 54?
c * 0 0 OTHERWISE * FNLE c',3
C o * rNLE S4
C **o •o•• •. 0000000.000000•0000 0e •• •# *O• •O • NLE 545

C FNLE 546
DIMENSION C(1),CFO),P(1),PFi()oX(I) YMCI) YC(1) R(1).RSQ(1), FNLE :47

I ALFA(1)9BATA(1),W(1) FNLE 54P
DIMENSION U(400)%UU(400)9S(10000) FNLE 549

C rULE 550
c * *F 0000 * 00 * 00000 * 0£ 0 * 0 00• *0 0* FILE 5(l
C * 0 FNLE ;5?

c * WARNING ... THE DIMENSIONS OF U AND DU ABOVE MUST EQUAL * FNLE S;3
* OR EXCEEO NS w N?•(1*N23), THE NUM4ER OF EQUATIONS * FNLE c55

C * IN SUBROUTINE ROME, THE DIMENSION OF ARRAY S • FNLE 55S
C 0 ABOVE MUST EQUAL OR EXCEEn N4*NS, FOR EACH VALUE * FNLE 5S6
C 0 O THE INDEPENDENT VARIASLE X, * FNLE 557
C * FK4LF S58

S• U SURSCRIPTS... DENOTE THE COMPUTED VALUES OF o.. * FNLE 5Si
C * *FNLE r)0
cT 19,2..* N2 THE N2 DEPENDENT VARIABLES * FrLE 5oI
C * N2#1#... NS THE N2*N23 PARTIAL DERIVATIVES, WHERE * FNLE 56?
C 0 PARTIAL(JK) a U(J#K*N2) * rNLE 563
C •* FNLE 564
C * ARRAY DU DENOTES DU/DX. ARRAY S IS A COMPILATION * FNLE 956
C * OF ALL THE U VALUES, THAT IS, * FNLE Sh6
r S(1),...S(NS) a U(1),,..oU(NS) AT Xl() * rNLE 5h7
C 0 S(NS+1)9...S(12N5) a Utl),...U(NS) AT X(2), ETC. 0 FNLE 8sm

C F 0 •NLE 569
c * *t 00*t*0*000*0000 0 *000 000t 000FNLE S70
C F4LE 571

COMMON /NAPLES/ PAR(40)OFLAG(60) 'NLE ?72

C FNLE S73
C * 0 e * 0 * 0 0 * 0 * • * • • * 0 * • 0 0 0 0 0 0 0 * 0 0 0 0 F NLE 57•
C 0 * FNL.E 574

C * THF ABOVE LABELLED COMMON MUST BE LINKED TO AND USED IN THE * FNLE S7*,
C 0 uSERIS SUqROUTINE ROME. THE VALUES ARE ESTA4LISHED HERE IN 0 FN..E S77
c SUBROUTINE PARIS. * FNLE 57H
S• PAP a THF ARRAY OF N3 PARAMETER VALUES 0 FNLC f-7Q

C FLAG a THE ARRAY OF N23 FLA5S FOR A GIVEN ROUN09 eHERE O 1NLE 5kO

C * FLAG(K) % K-TH INITIAL. CONDITION FLAG, K a 1,92.,N2 0 FNLE SPI

C 0 FLAG(K*N2) = K-TH PARA'ETER FLA(3. K * 1*2o,.N3 FNLF r14?
C * 0 FNLE S A
C * * * * * * * * ,* * * * 0 * 0 * 0 * * * 0 * 0 0 0 0 0 0 0 0 0 0 FNL• SR'.
C FrLE Ses

ExTrFRNAL ROME FNLE 586
DATA HMINs0,DFLX/-!.O, .000109 .125/ F/LE F 7

C rNLE •B

C *** PART (1) PRFLIMINARIES FNLE 5B9
C r'ILE 59O

IR x 0 FNLE 591
SM2 a N?3 FNLE 5Q?

MI v Ni FrLE 593
-M2 a 42 rNLE S94

M4 a N4 F4JLE r, '
s • M?*(I*f?3) FNLE S4e

IF (MS .I E. 400) 5OTO ?4 FNLE 5g7
IP a 1 rNLF c~g

n ~86•



PRINT 10 FNLE 544
10 FORMAT(IHOo SUBROUTINE PARIS WAqNING ,°9) FNLE ei

PRINT 22,M5 FNLE 60).
22 FORMAT(IH ,1OX0INCREASE DIMENSIONS OF U AND DO (AND IN SUBROUFNLE 502

ITINE MERSOv INCREASE DIMENSIONS OF T, G AND S) TO '1IS) FNLE O03
2* * a M4404 FNLE 6U4

IF (M6 oLF. 10000) GOTO 28 FNLE 60:
IP a I FNLE 6ofi
PRINT 10 FNLE 607
PRINT 26946 FNLE 608

26 FORMAT(IH 91OX,'INCREASE DIMENSION OF S TO '.15) FNLE 609
28 CONTINUE FNLE blO

IF (IR .EQ, 1) RETURN F4LE 611

IN % 0 FNLE 61?
H a DELX*(X(M4)-ýi))/FL.OAT(M4-1) FNLE S1
JA a M? # I FNLE b14

DO 30 JB a JAOM5 F"4LF ,In
U(JR) - 0.0 FNLE 616

DU(JB) u 0,0 FNLE 417
30 CONTINUE VrLE 618

DO 32 K a 1,M2 1NLE 6i.,
FLAG(K) a CF(K) FNLE ý?0

32 CONTINUE FNLE 6?1
M3 a M?3 - M2 FNLE s??
DO 34 K 19M3 FNLE 623

PAR(K) aP(K) FNL.E 6?'.
KA a K M '2 FNL[ SZ
FLAG(KA) a PF(K) FNLE 6?6

34 CONTINUE FNLE 5? 7

C FNLE OPF
C *** PART (2) DETERMINE KL a NO. OF POINTS IN X LESS THAN XA FNLF 629
C AND KR a NO, OF POINTS IN X GREATER THAN XA. FNLE S30
C IF XA COINCIDES WITH A POINT IN X9 THEN THE 'COMPUTED' FNLE 631
C Y VALUES AT THAT POINT ARE THE INITIAL CONDITIONS FROM FNLE 63,'
C SURROUTINE BONN, rNLE 633

C FNLE 634
DO 40 '4 z 1,'44 F 14L E

IF (XA-X(' )) 70950940 FNLE
40 CONTINUE FNLE 37

KL a M4 FNLE 63H

KR x 0 FNLE 31)
GOTO 80 FNLE -)

50 KL a ' - I FNLE h'I

KR a M4 - ' FNLF 64'?
IM a I rNLE 543

CALL BONN(M4,MSC9J) FNLE 644

LH a KLNMS FNLE sý.S
6O 60 L a IvM9 FNLE 646

LB a LR + 1 FNLE 'T47
S(L9) a U(L) IrN L F ,9

60 CONTINUE FNLE 0,4

GOTO R0 FNLF $,S0

70 KL aM N4 fS
KR a • - KL FNLE 6S?

C FNLE 6S"
nC *- PART (3; FOR EACH POINT IN X, SOLVE THE SYSTE4 OF EOUATIONS F-E 664

C DEFINED IN SUAROUTINE ROME TO O-TAiI' COMPUTED Y VALUFS.,NLF b566
C TWSE Y VALUES ARE STORED IN S. rNLE 6s

.0 CONTINUE FN .E h5S

IF (KL F~Q. 'I GOTO 90 FNL)ý Os'g



IA ir -1 FNLE 6q9
IH = 0 FNLE 660

LK = KL F4LE 661
GOTO 1ou FNLE 66?

90 IA x I FNLE 663
III z M4 I FNLE 664
LK a - KR FNLE 665

100 Xl x XA FNLE 666
IF (IM •EQo 0) CALL BONN(A29MS9CvU) FNLE 667

• PA C FNLE 668

110 ' X!LK) FNLE 6b9

•r (NA .NE. O) GOTO 114 FNLE 670

CALL ROME(CoXiX2vU) FNLE 671
GOTO 116 FNLE 672

114 CONTINUE FNLE 673

HA = DELX*ARS(X2-XI) FNLE 674

HH w ABS(H) FNLE 675
H x AMIN1(HAHR) FNLE 676

CALL MERSO (RO4EvMS•K,1X2vUU, HHMINQ) FNLE 677
116 CONTINUE FNLE 678

LB = (LK-I)*MS FNLE 679
00 120 L a 1,MS FNLE 680

L9 x LB + 1 FNLE S81
S(LB) x U(L) FNLE 68?

120 CONTINLIE FNLE 683
LK • LK + IA FNLE 684
IF (LK .NF, 18) GOTO 110 FNLE 685
IF (IA ,EQ2 1) GOTO 130 FNLE 68s
IF (KR *NE. 0) GOTO 90 FNLE 687

C FNLE 684
C *•4* PART (4) CONVERT VECTOR S TO VECTOR YC AND FORM THE RESIDUAL FNLE 689

C VECTOR R, FNLE 690
130 CONTINUE FNLE 691

00 ISO M = 1,M4 FNLE 692
NR a (M-I)*MI FNLE 693
NY z (M-1)*M2 FNLE 694

LA = (i--!)*M5 FNLE 6q5
00 140 J x ilM2 FNLE 696

TM = NR + * FNLE 697
Jm a NY + j FNLE 699

LR = LA + J FNLE S99
YC(JM) = S(LB) FNLE 700
IF (J .LE. Ml .*AND W(IC) ,NE. 0m) R(I4) a Y4(JM) - YC(JM)FNLE 701
IF (J .LE. Ml ,ANDo W(IM) *Ego 0.) R(Im) a 0, FN4LE 70?

140 CONTINUE FNLE 703
1'0 CONTINUE FNLE 704

C FNLE 705
C *** PART (5) COMPUTE VECTOR RSQ FNLE 706
C FNLE 7C7

I)() 0 1 0 I z ,NI l FNLE 708
RM = 0,0 FNLE 709
rfl 160 4 = 1,M4 FNLE 710

Im - I * (M-)*PM4 FNLE 711
Ru x RN I W(IM)*R(IM)*Ž FNLE 712

160 CONTINUE FNLE 713
RSQ(Il a RM FNLE 714

170 CONTINUF FNLE 715
IF fNR .EQ. 0) RPfURN FrdLE 71!

SFNt,- 717
C 01"t PART (6) CONPUTE VECTOR ALFA FNLE 714
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C FNLE 719
DO 210 K a 1,M23 FNLE 7?O

LA a K*M2 FNLE 721
NL a (K-1)*M23 FNLE 722
00 200 N a KsM23 FNLE 7?3

LB a N*M2 FNLE 7?4
NK w NL + N FNLE 7?5
ALFA(NK) a 0.0 FNLE 72h
DO 190 I a 1,M1 FNLE 7?7

ALF A 0.0 FNLE 72P
LC a LA + I FNLE 7?9
LD a LB + I FNLE 730
00 180 M 1 #,M4 FNLE 731

IM * I * (M-)*Ml FNLE 73?
ALF a ALF + W(IM)*S(LC)*S(LD) FNLE 733

LC a LC + MS FNLE T34
LO a LO + MS FNLE 735

180 CONTINUE FNLE 73b
ALFA(NK) a ALFA(NK) * ALF FNLE 737

190 CONTINUE FLE 73H
IF (N SEQ* K) BOTO 200 FNLE 739

KN a K + (N-I)*M23 rNLE 740
ALFA(KN) a ALFA(NK) FNLE 741

200 CONTINUE FNLE T4?
210 CONTINUE FNLE 741

C FNLE 744
C *** PART (7) COMPUTE VECTOR BATA F4LE 74
C FNLE 746

DO 240 N = 19M23 FNLE 747
LA a N*M2 FNLE 748
RATA(N) z 0.0 FNLE 749
UO 230 1 a I1Ml rNLE 750

BAT z 0.0 FNLE 751
!.R z LA + I FNLE 752
D0 220 M a 1,M4 FNLE 7,3

IM a I + (M-1)*MI FNLE 7s'
RAT = BAT + W(IM)*R(IM)*S(LB) FNLE 7',
LB " LB * MS FNLE 7i

220 CONTINUE FNLE 71)7
BATA(N) w RATA(N) + BAT FNLE 7Tb

230 CONTINUE FNLE 7;
?40 CONTINUE FNLE 7hO

RETURN FNLE 761
END FNLE 72?

C FNLE 7th
C ------- ---------------------------------------------------------------------
C F'LE 7e1

SURROUTINE RONN(N2tNS.C#U) FN L 7t' t
C FNE 7 67

C 00 FNLE 7hg3

C THIS SURR(GUTINE (CALLED BY SUBROUTINE PARIS) ASSIGNS INITIAL * FAL' 77n

C * CONDITIONS (THE VALUES AT X a XA) TO VECTOR U. FOR THE % FNL' 771
C " DEFINITIONS OF THE ARGUMENTS. SEE T4E COMMENTS IN SUBROUTINF * FNLý I.

c PARIS. * FNLE 71
C • * F4L.E 774

SFNLL 776

UI'4ENSION C(N2) ,ii(N5) CNLL 777
M2 a N2 FNLE 77H
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MS a N5FNLE 779
DO 10 ISM2FNLE 7HO

U(J) aCUi) PNLE 7RI
10 CONTINUE FNJLE 79?

LA a 0 FNLE 793
DO 10JA a 9M2 FLE 784

LA aLA + M2 FNLE 78$
DO 20 JS a 1,42 FNLE 786

L9 = LA + J8 FNLE 797
IF (JA .EQ, Jb3) U(L8) a 1.0 F'NLE 788
IF WJA *NE. JS) U(LB) a 0.0 FNLE 789

20 CONTINUE F'NLE 790
30 CONTINUE FNLE 791

1F (LA *GE. M5) GOTO 50 FNLE 79?
j.LA = LB I FNLE 793

DO 40 LB LA,'45 FNLE 794

U(LR) 0. Oo 4LE 7 91

50 COTINUEFNLE 797
RETURN FNL.E 798
END PFNLE 7 v-o~

C FNJL E 400

c FNLE 802
SUF.R0UTP'4E 4F'RSO (FUNC9N9X9ZvYF9HMH4IN9E) FN4LE 803
ODtMFNSION Y(i)*Fi1) $ DIM4ENSION T(400),G(400)9S(400) FNLE 904
LOGICAL 8iRC.8EH9BRp8X S NTuNS ZTaZS 4M1u$MINS ET=ABS(E3 FV~LE 805
IF(HMI.LToe0n4MIxo010lARS(H4) S 8HaBRuRxw*TRUE. FNLE 806
8C=0.0.LT.ET.AND.ETLT.1.0 S E~mET*5*0 FNL.E 907
1I ((ZTGT.X.ANO.H.LT.0.0'I OR. (ZT.LTX.AND*i1.tT.0.0) Na-H F4LE O80
IF(mT.LE,400)GOTOlOOS PRINT 19NT% STOP FNLE 609

1 FORMAT(22H- RUN ER48OR9 MERSON, NuvIl0) FNLE 810
100 XS=X 5 DO 110 Ju1.NT S G(J)uY(J) FNLE 811
110 CONTINUE FNLE 81?
200 HS=HsS QaX.H-ZTS RF=.TRUE. F4LE 813

IFC(Q.LT.3.0.AND.Hi.GE.o.o).OR.CQ,GT.0.0.AND).HLE..0O)) GO TO 210 FNLE R14
HzZ7t-X% RR=,FALSE. FNLE 815

210 H3=H/3*0 S 00 510 ISWxj95 S CALL FUNC(NTXgYoF) S 00 450 Iw1,NT FNLE 816
FQ=H3*F(I)% GOTO(3019302930393049305)91SW FL 1

*301 T(!)=RuOS GOTO 400 FNJLE 819
*30? R=0.5*(O+T (InS k3OTO 400 FA~LE R19
V ~303 ()==.*SRx0%375*CR~,T(I))S GO TO 400 FNLE 820

304 T(I)uRxTcI)*4.0*Qi Ral.5*(R-SUH)S GO TO 400 FNLE A21
305 R=0.5*(Q.T(I))S QmAa~S(2,O*R-1.5*(Q+S(I))) FNLE 8??
400 Yi1)zGi(I)+R S IF(ISW.NE.5) GO TO 450 S IF(.N06T.83C)G0O0 450 S RmE5 FNLE 823

lF(ARS(Y(T)).GiE.0.001)RuR*ABS(Y(I)) FNJLE 824
IFHO.,LT.R),OR,,NOT.BX)GOTO 420 % BRwTRUE.S BH**FALSE.S HN0.S'H FNLE 825
JF(Ai3S(H$)GE.H4I)GOTO 410 S HwSIqN1V4)*HMI*1 8Xu.FALSE. FNL.E 826

410 DO 411 J=1,NT S Y(J)KG(J) FNLE 8?7
411 CONIINUF S Xs.XSS GOTO 200 FNLE 821
420 JF (Q.GF,0.03j25eR) REUFALSE. vNLE 829
4rO CONTINUF S GOTO(5019510-A503#5049510)91SW FNLE 930
501 X*X*H3S GOTO S10 FNLE 931
r)03 XtX*0.5*H3S GOIO 510 FNLE 83?
504 XUX+0.5*H FNLE 833
510 CONTIN(JF S IF(.NOT,HCI GO TO 521 FNLE 83t6

IF(.NOT.,(4FAND),4H.ANfl.BR)) 6O To L,( S HW2.0*ý4 S BXu.TRUE. FNLE R35
"r-20 RH=.TWUE. FNLE 836
c%? JF(RR) GO T'O 100 S HariSS RETURN S END rNLE A37
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SUBROUTINE NATINV

OBTAINED FROM COMPUTER SUPPORT DIVISION
ABERDEEN RESEARCH AND DEVELOPMENT CENTER

SUBROUT!NE MATINV(AvNCNMAXKtDET) '• 1

DIMENSION A(NMAXt),C(|| MATINV 2
NN a N MATINV 3
KK a K MATINV 4
IF 'il-KKI 3,1,1 MArINV 5

I N3 a NN MATINV 6
IF IKK) 294,2 MATINV 7

2 ASSIGN 9 TO N5 MATINV b
ASSIGN 13 TO NT MATINV 9
GOTO 5 MATINV10

3 N) a KK 4 NN - I MATINVII
4 ASSIGN IC TO N5 MATINVI2

ASSIGN 1' TO N7 MATI!VI3
5 DET - 1.0 MATINVI4

00 15 I - loN MATINVI
IF W It)) 7,6,7 MATINVib

6 WRITE(6,171 MATI PVI 7
DET - 0.0 MATINVIR
COTO 16 MATINV19

7 TI I.O/A(IIl MATINV20
CET - CET*AIII! MATINV21
A11,11 1 .eO MATINV22
CO 8 J a lN3 MAT INV23

A(l,J! - A(IJ)*1T MATINV?4
8 CUNTINUE MAT NV25

COTO N5, (9,101 MAT INV26
9 C~l) a CII)*Tl MAT NV27

10 00 14 J a 1,NN MAT INV?8
IF (I-J 1191i4911 MAT INV2(S

11 TI a AlJ,Il MAT INV30
A(JI) - 0.0 MAT NV31
CO 12 L 1 1,N3 MAI NV32

AI(,.L) - AIJ,L) - T7*AIIiL! MAT INV32
12 CONTINUE MAT NV34

GOTO N7t (13,141 MAT INV5
13 C(J) - CIJ) - TIOCII) lhATI N.'A.
14 CONTINUE MATINV37
15 CONTINUE MAT I WN 3 S
1t RETURN' MAT INV39
17 FCt"' AT 1 16H SINGULAR MATRIXI MATINV'.C

END MAT I NV.!1
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